
Imperial College London

Department of Electrical and Electronic Engineering

Equality Saturation for Circuit Synthesis and

Verification

Samuel Coward

Supervised by George Constantinides and Theo Drane

Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in
Electrical and Electronic Engineering of Imperial College London and

the Diploma of Imperial College, February 2025

Copyright © 2024 Samuel Coward.

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents

are licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence

(CC BY-NC). Under this licence, you may copy and redistribute the material in any medium

or format. You may also create and distribute modified versions of the work. This is on

the condition that: you credit the author and do not use it, or any derivative works, for a

commercial purpose. When reusing or sharing this work, ensure you make the licence terms

clear to others by naming the licence and linking to the licence text. Where a work has been

adapted, you should indicate that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in

this licence or permitted under UK Copyright Law.

i

Statement of Originality

I, Samuel Coward, declare that the work presented in this thesis is my own, and that any other

work has been appropriately referenced.

ii

Abstract

The core computational components of a modern Application Specific Integrated Circuit (ASIC)

are implemented as datapath circuits, typically specified at the Register Transfer Level (RTL).

In industry, the design, optimization and verification of such circuits is mostly a manual process

performed by skilled engineers. This effort is a worthwhile investment since datapath circuits

are usually the most timing critical circuits, occupying a significant proportion of the total

circuit area. Unfortunately, due to the aggressive optimizations and inherent logical complexity,

datapath circuits are associated with an equally complex verification challenge.

This thesis takes steps towards the automation of the optimization and verification of datapath

circuits, developing tools capable of matching manual design performed by skilled engineers.

A core idea behind the thesis, is to raise automated datapath optimization to the abstraction

level typically explored by human engineers. This thesis proposes an approach that leverages

a data structure, the e-graph that was originally invented by the formal methods community.

Via an approach they call equality saturation, the compiler community have repurposed this

data structure for program optimization. Applying equality saturation to datapath circuit

optimization yields significant improvements in circuit power, performance and area, whilst

also offering a robust verification flow that provides the correctness guarantees required by

industrial circuit design.

This thesis describes a number of theoretical enhancements to equality saturation that permit

the expression of new classes of optimization that go beyond those implemented by existing

technology. The first of these formalizes the connection between equality saturation and pro-

gram analysis techniques, creating a positive feedback loop that leads to analysis refinement

and deeper exploration. The second, describes an approach to encoding context-awareness

in equality saturation, capturing optimizations that stem from constraints expressed within a

program.

iii

iv

Acknowledgements

First and foremost I wish to express my gratitude to Intel Corporation, not only for funding

my PhD, but also for their willingness to experiment with a highly integrated PhD model. The

access to Intel engineers, designs and resources has ensured the research is highly relevant in

an industrial setting, addressing the difficult questions that remain in modern circuit design.

This thesis would not exist without the vision and determination of Theo Drane, the consistent

support of Altug Koker and those from both Intel and Imperial that brought both parties to

an agreement, in particular Susan Capello and Jing Sheng Pang.

Thanks to the sponsored PhD model, I had the privilege of working with two wonderful super-

visors. My deepest gratitude goes to both Theo Drane from Intel and George Constantinides

from Imperial. It was a paper pointer from George during the early months of my PhD, that

introduced me to the programming languages field and influenced so much of my PhD. George’s

ability to reduce a problem down to a core theoretical question helped guide me through much

of the PhD, and allowed me to connect with a broad range of research communities. Mean-

while, Theo’s drive and industrial perspective, pushed the research to not only answer difficult

questions in circuit design, but to concisely communicate the solutions to countless different

audiences. I would also like to thank my examiners Alastair Donaldson and Tom Melham for

their challenging questions and valuable suggestions that have helped to shape this final thesis.

Perhaps the most important lesson I learnt, is that the times of greatest success are the times

at which it is most important to keep one’s feet firmly grounded.

Within Intel, I was fortunate to be part of the Intel Numerical and System Level Design

Group, which grew to six full-time staff at its peak. My sincere thanks go to Emiliano Morini

for teaching me everything I know about verification and for many laughs along the way, to

Rafael Barbalho for sharing his expertise in software design and for his drive to see my research

deployed as widely as possible, to Bill Zorn for being an authority on all things programming

languages, and to Chris Poole for his unbounded enthusiasm for research. Without this team,

the scope of my research would be far more limited and the quality of my tools would be less.

More broadly, I have worked with many great people across all parts of Intel. I am grateful to

each one of them.

Being physically located in the Circuits and Systems Group (CAS) at Imperial has led to

v

friendships and collaborations that I have no doubt will stand the test of time. To Aditya,

Diederick, Alex M, Ben C, Alex D, Ben B and Zhewen my thanks go to making me feel so

welcome at the start of my PhD. I would also like to thank Yann and Jianyi for exciting col-

laborations and for standing alongside me in the pursuit of better tools for hardware designers.

To my travel companion extraordinaire, Marta Andronic, thank you for bringing an unrivaled

energy to the office and for bringing positive culture change to CAS. A huge thanks must go

to Wiesia Hsissen, who keeps the whole CAS group on track and has made my life easier on

countless occasions. There are too many friends to highlight individually but my thanks go to

Guoxuan, Mingzhu, Toni, Dan, Ebby, Michalis, Quentin, Pedro, Cheng, Violet, Cano, Keran,

John, Omar, Sina and Zehui.

Lastly, it remains to thank the friends and family that supported me along the way. To James

Van Der Walt, thank you for inviting me into your home on so many occasions and I can

only apologize for any chaos connected to my visits, although I do not take sole responsibility.

Thank you to my parents, without the hours spent on times tables in the car and your endless

support I would not be where I am today. Of course, many thanks go to my partner Karolina,

who has helped me to become a more considerate person, as we have navigated a sometimes

challenging but mostly fortunate life together.

The chance to simultaneously span academia and industry has provided opportunities that few

will have and I hope that I have made the most of them. To anyone who is fortunate enough

to be offered such a role, I would highly recommend it.

vi

Acronyms

AI abstract interpretation

ASIC Application Specific Integrated Circuit

CSA carry-save adder

CSD Canonical Signed Digit

DPV Datapath Validation

EC equivalence checking

ECO Engineering Change Order

EDA Electronic Design Automation

FIR Finite Impulse Response

FMA Fused Multiply-Add

FPGA Field Programmable Gate Array

FV Formal Verification

GPU Graphics Processing Unit

HDL hardware description languages

HLS High-Level Synthesis

IA interval arithmetic

ILP integer linear programming

IP Intellectual Property

LRM language reference manual

LS Logic Synthesis

LZC leading-zero count

vii

MCM Multiple Constant Multiplication

PPA power, performance and area

RL reinforcement learning

RTL Register Transfer Level

SAT Satisfiability

SMT Satisfiability Modulo Theories

STE Symbolic Trajectory Evaluation

TCAD IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems

viii

Contents

Statement of Originality ii

Abstract iii

Acknowledgements iv

Acronyms vii

List of Tables xv

List of Figures xvii

1 Introduction 1

1.1 Problem Statements . 6

1.2 Contributions . 7

1.3 Implementation and Evaluation . 9

1.4 Thesis Outline . 9

1.5 Publications . 10

2 Background 13

2.1 Datapath Circuit Design . 13

ix

x CONTENTS

2.1.1 RTL Synthesis . 14

2.1.2 Manual Datapath Design . 18

2.1.3 Low-Power RTL Design . 19

2.1.4 High-Level Synthesis . 21

2.2 Datapath Formal Verification . 22

2.3 Program Analysis . 25

2.4 E-Graphs and Equality Saturation . 27

2.4.1 Equality Saturation and Rewriting . 27

2.4.2 Egg . 30

2.4.3 Applications . 31

3 Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level 33

3.1 Intermediate Representation . 35

3.2 Rewrites . 39

3.2.1 Specifying Rewrites . 39

3.2.2 Synthesizing Rewrite Conditions . 44

3.3 Extraction and Back-End . 49

3.3.1 Cost Model . 49

3.3.2 Common Sub-Expression Aware Extraction 50

3.3.3 Code Generation . 51

3.4 Verification . 52

3.5 Results . 53

3.5.1 Benchmark Selection . 53

CONTENTS xi

3.5.2 Exploiting Datapath Optimizations . 56

3.5.3 Bitwidth Dependent Architectures . 59

3.5.4 Performance . 61

3.6 Cost Metric Evaluation . 62

3.7 Summary . 65

4 Combining Equality Saturation with Abstract Interpretation 66

4.1 Theory . 70

4.1.1 Abstraction . 70

4.1.2 Application to E-graphs . 72

4.1.3 Cyclic E-graphs and Fixpoints . 74

4.2 Implementation . 76

4.3 Results . 78

4.3.1 Benchmark Selection . 80

4.3.2 Evaluation . 80

4.3.3 Iterative Method Discovery . 80

4.4 Summary . 82

5 Automating Constraint-Aware Datapath Optimization using E-Graphs 84

5.1 Localizing Constraint-Aware Optimization . 87

5.1.1 Sub-Domain Equivalence . 87

5.1.2 Sub-Domain Equivalence in an E-Graph 88

5.1.3 Program Analysis Refinement . 91

5.2 RTL Performance Optimization . 95

xii CONTENTS

5.2.1 Value Range Analysis . 96

5.2.2 Constraint and Value Range Aware RTL Rewriting 99

5.2.3 Extraction . 102

5.3 Results . 104

5.3.1 Case-Study: Floating-Point Subtract . 105

5.3.2 Multi-Objective Optimization . 109

5.3.3 Benchmark Selection . 112

5.3.4 Delay Optimization Evaluation . 114

5.4 Summary . 116

6 Combining Power and Arithmetic Optimization via E-Graph Rewriting 117

6.1 Encoding Power Optimizations . 119

6.1.1 Data Gating . 120

6.1.2 Clock Gating . 123

6.2 Power Estimation and Extraction . 125

6.2.1 Simulation . 125

6.2.2 Operator Power Model . 127

6.3 Results . 128

6.3.1 Benchmark Selection . 130

6.3.2 Dynamic Power Reduction . 130

6.3.3 Data Dependent Design . 133

6.4 Summary . 134

CONTENTS xiii

7 Formal Verification and Bug Fixing via E-Graph Rewriting 135

7.1 ROVERIFY: A Formal Verification Assistant . 139

7.1.1 E-Graph Initialization . 139

7.1.2 Bitwidth Dependent Verification Rewrites 140

7.1.3 Maximal Sharing Extraction . 142

7.2 ROVERIFY Case-Study . 145

7.3 ROVERIFIX: Automatic Bug Fixing . 147

7.4 ROVERIFY Results . 149

7.4.1 Benchmark Selection . 150

7.5 Summary . 153

8 Conclusion 155

8.1 E-Graph and Equality Saturation Outlook . 156

8.2 Directions in Digital Circuit Design . 158

8.2.1 Pipelining and Retiming . 158

8.2.2 Approximate Computing . 159

8.3 Software Roadmap . 159

8.4 Final Remarks . 160

References 162

Appendices 181

A Benchmarks 182

B Associativity of Addition Condition 183

C SMT Encoding of Motivational Example 185

xiv

List of Tables

3.1 VeriLang operator table . 35

3.2 ROVER datapath rewrites . 42

3.3 Evaluation of ROVER optimizations . 55

3.4 ROVER performance . 55

4.1 Interval arithmetic rewrites . 77

5.1 ASSUME node rewrites . 91

5.2 RTL comparator rewrites to aid analysis refinement 95

5.3 Additional VeriLang operator table . 99

5.4 Dynamic and conditional rewrites exploiting domain knowledge 101

5.5 Constraint-aware ROVER synthesis results for performance optimization 113

6.1 Power optimization rewrites . 121

6.2 Circuit power optimization synthesis results . 129

6.3 Switching activity configuration comparison table 134

7.1 Verification rewrite set . 141

7.2 Bug Fixing Rewrites . 148

xv

7.3 ROVERIFY benchmark results . 150

7.4 ROVERIFY e-graph summary . 152

A.1 Summary of benchmarks used throughout thesis 182

xvi

List of Figures

1.1 Circuit Design Flow Comparison . 3

1.2 Synthesis Tool Comparison . 5

1.3 Design cost progress during rewriting . 5

1.4 Tool and library suite . 7

2.1 Operand isolation optimization . 20

2.2 Equivalence checking tool overview . 24

2.3 Waterfall approach to equivalence checking . 25

2.4 E-graph rewriting example . 28

2.5 Equality saturation flow . 29

3.1 ROVER flow diagram . 34

3.2 Merging arithmetic operations using carry-save representation 38

3.3 Associativity of addition rewrite . 41

3.4 ROVER flow diagram . 45

3.5 Decision tree classifier for associativity rewrite 46

3.6 Area-delay profile for Media Kernel . 54

3.7 Shift Mult Benchmark . 57

xvii

xviii LIST OF FIGURES

3.8 Bitwidth dependent architecture selection . 60

3.9 Synthesis results for bitwidth dependent architecture selection 61

3.10 Violin plot of synthesis noise . 63

3.11 Histogram plot of synthesis noise . 63

3.12 Correlation between ROVER’s cost model and logic synthesis results 64

4.1 Interval analysis e-graph example . 68

4.2 Positive feedback loop of e-graph rewriting and analysis 69

4.3 Abstract property propagation algorithm . 73

4.4 Cyclic e-graph . 74

4.5 Three expression interval analysis e-graph . 79

4.6 Relative interval width of e-graph analysis . 79

5.1 E-graph representing a constraint-aware optimization 85

5.2 E-graph abstraction refinement via ASSUME nodes 93

5.3 Constraint-aware ROVER flow diagram . 96

5.4 E-graph rewriting of a leading zero count optimization 100

5.5 Half-precision floating-point subtraction case-study 108

5.6 Alternative case split designs for floating-point subtractor 109

5.7 Area-delay profiles for ROVER optimized floating-point subtractors 110

5.8 Exponent max tree case-study . 111

5.9 Pareto frontier of ROVER generated max tree implementations 111

6.1 Operand isolation optimization . 118

6.2 ROVER’s power optimization tool flow . 119

6.3 Transparent and enabled register circuit diagrams 120

6.4 Stimuli generation algorithm . 126

6.5 Number of designs represented by the e-graph vs. the number of e-classes 127

6.6 Delay-power profile . 132

6.7 Pipelined Mux Add Tree benchmark diagram 132

7.1 Motivational example breaking existing equivalence checking tools 137

7.2 ROVERIFY flow diagram . 139

7.3 E-graph representation of motivational example 140

7.4 ROVERIFY generated verification waterfall . 143

7.5 E-graph convergence for motivational example 145

7.6 ROVERIFIX flow diagram . 148

7.7 ROVERIFIX motivational example . 149

7.8 Box Filter dataflow graph . 152

8.1 Tool and library suite . 160

xix

xx

Chapter 1

Introduction

In 2020, global microchip manufacturing reached one trillion units, according to a European

Union report that also projects semiconductor demand will double between 2022 and 2030 [1].

This means that the need for efficient digital circuit design techniques is greater than ever. All

digital circuit design approaches pair a skilled engineer (or team of engineers) with a suite of

automatic design and verification tools. Unfortunately, consolidation in the Electronic Design

Automation (EDA) industry has left engineers with few core design tools to choose from.

In 2024 there are broadly two classes of approach to digital circuit design. The first, more

mature method, defines a digital circuit and its timing behavior at the RT-level, using an

entrenched hardware description languages (HDL) such as Verilog [2] or VHDL [3]. The second,

more recently developed approach, High-Level Synthesis (HLS) [4, 5, 6, 7], allows engineers to

write their digital circuit designs at a higher level of abstraction, using extensions of software

languages like C++. HLS tools consume these high-level circuit designs that do not specify the

circuit’s timing behavior. The HLS tool performs the complex steps to generate a functionally

equivalent RTL design with the appropriate timing behavior. In both cases, the RTL generated

is passed onto a Logic Synthesis (LS) tool [8, 9], the next step in the digital circuit design tool

flow. Both design flows rely on graph representations of digital circuits, a dataflow graph for

encoding data dependencies and a control flow graph for encoding possible execution paths.

Accompanying the circuit design process is an architect, who also takes the natural language

1

2 Chapter 1. Introduction

specification and produces a model, usually in a language like C++. Using a suite of verification

tools the RTL implementations are verified against this model by a verification engineer, feeding

any bugs back to the design engineers. Figure 1.1 illustrates the alternative methodologies and

the respective tool feedback loops. In their current form, neither approach allows engineers to

efficiently deliver high-performance and provably correct digital circuit designs, particularly for

datapath circuits.

A challenge in the low-level design approach is that in addition to specifying the circuit’s

functional and timing behavior, the RTL engineer must also consider their power, performance

and area (PPA) targets. Whilst LS performs many complex optimizations, it operates on a

mostly fixed dataflow graph. For RTL written at a word-level of abstraction, LS will not re-

order operations or apply many higher-level transformations, such as local resource sharing.

This thesis will demonstrate that such techniques offer significant PPA improvements. My

experience in Intel has shown how expert RTL engineers manually optimize their HDL code

to realize these PPA gains. Often this involves iteratively running LS to evaluate the impact

of the most recent changes, further refining the design based on reports generated by LS.

Unfortunately, this is both bug prone and time consuming due to the long LS compile times,

reducing the productivity of the design flow.

In the high-level design flow, the engineer no longer needs to specify the timing behavior

but currently, nothing in the design flow performs the PPA optimizations implemented by

the experienced RTL engineer. The HLS engineer is not expected to understand low-level

digital circuit design principles, nor do the input languages allow them to succinctly express

the same optimizations. Meanwhile, whilst HLS tools have matured significantly, they currently

defer datapath optimizations to LS which, as already discussed, lacks the capabilities of expert

engineers. For custom datapath designs, my experience and the continuing prevalence of RTL

suggests that circuits designed using these high-level techniques are unable to match the PPA

of those produced using the low-level approach, limiting industrial application to prototyping

exercises. The introduction of a tool-chain, where LS consumes the output of HLS, introduces

a potential correlation problem, where the circuit quality predicted by HLS may not match

that produced by LS. Such mismatches can be frustrating, if not impossible, to resolve and

3

Natural Language
Specification

HLS Engineer

Hand-Written
C++

HLS Tool

Generated
RTL

LS

Generated
Netlist

RTL Engineer

Hand-Written
RTL

Architect

Hand-Written
Model

Verification Tools

LS

Generated
Netlist

LS
Feedback

HLS
Feedback

Figure 1.1: A comparison of digital circuit design flow methodologies. Red arrows denote where
the design techniques described in this thesis are applied.

more importantly they could drive the HLS tool to make poor design decisions. Compounding

the problem, many HLS tools lack an associated formal verification flow that can prove the

correctness of the generated RTL, although Cadence’s Stratus [6] is now more tightly integrated

with the Jasper verification platform [10].

The above discussion highlights a gap between the high-level software optimizations performed

by HLS and the low-level optimizations performed by tools like LS. Crucially this under-

explored gap holds the potential for substantial gains in PPA of digital circuits, as Figure

1.2 shows. Currently, these PPA gains are realized via time consuming and bug-prone manual

RTL optimization and design space exploration.

Borrowing terminology from a former EDA tool [11], we refer to this challenge as behavioral

4 Chapter 1. Introduction

synthesis. More precisely, behavioral synthesis will refer to the process of transforming behav-

ioral RTL, the sort of code written without considering PPA targets, into highly optimized

RTL, for example after an expert RTL engineer has optimized the behavioral design. For the

same reasons that HLS claims to improve circuit quality in design domains it is well suited

to [6], automating behavioral synthesis also expands design space exploration resulting in bet-

ter quality circuit designs. It also takes a large step towards realizing the productivity gains

promised by HLS tools, reducing the engineering effort required to produce an optimized im-

plementation. By its nature, behavioral synthesis takes larger steps through the design space,

introducing a potentially challenging associated verification problem.

The automation of behavioral synthesis could be tackled in one of two ways: equipping HLS

tools with the ability to capture and perform low-level hardware design optimizations, or by

building upon existing RTL design flows. This PhD elected to deploy the latter approach. By

operating on RTL, the techniques developed can be applied to both the human-written and

automatically generated RTL, providing an opportunity for immediate industrial impact.

A key observation is that manual behavioral synthesis is typically performed by applying a

number of known ‘useful’ transformations to a design. These transformations, and their domain

of validity, are accumulated through years of engineer design experience. In combination, these

transformations may result in substantial changes to the underlying RTL. Apart from some

simple transformations implemented automatically in modern ASIC design tools [8], the process

of determining a sequence of transformations to apply to an RTL design is currently based on

designer intuition [12], largely due to the non-convex nature of the design space: it is often

necessary to apply an early transformation that results in a worse-quality circuit before then

applying a later one leading to an overall improvement. Figure 1.3 illustrates an example where

it is necessary to initially apply transformations that increase circuit area cost via operator

duplication or replacement, but eventually lead to subsequent area saving transformations such

as arithmetic simplification or clustering, providing a net area reduction [13].

This thesis outlines an approach to automate and verify the results of behavioral synthesis

for datapath circuits. Such an approach removes the need for manual RTL optimization, and

5

0.2 0.4 0.6 0.8 1 1.2

100

200

300

400

500

Delay (s)

A
re
a
(u
m

2
)

Logic Synthesis
High-Level Synthesis
Manual Optimization

Figure 1.2: An area delay profile of the competing synthesis tools and human implementations
of an Intel Media Kernel.

0 0.2 0.4 0.6 0.8 1

−40

−20

0

20

40

Proportion of Rewrites Applied

C
ir
cu
it
A
re
a
M
et
ri
c
C
h
an

ge
(%

)

Figure 1.3: Progression of design cost throughout RTL rewriting for the Weight Calculation
benchmark (described in Section 3.5). The plot shows the percentage change in the circuit area
metric compared to the original design at every point in the rewrite chain. The area metric
may converge non-monotonically.

6 Chapter 1. Introduction

enables greater design space exploration. The robust verification flow ensures that engineers

can deploy the resulting circuit designs with full confidence. At the core of the approach is a

technique from the programming languages community, equality saturation [14, 15]. Equality

saturation addresses the challenge of determining an optimal transformation order leveraging

the e(quivalence)-graph data structure, which is capable of exploring, in parallel, all possible

transformation orderings, deferring the selection of the optimal ordering until a later stage.

This thesis describes the application of equality saturation to behavioral synthesis and verifi-

cation, and describes several general purpose extensions to the underlying equality saturation

technology.

1.1 Problem Statements

This thesis focuses on two primary problems, an optimization problem and a verification prob-

lem. An important definition will be that of functional equivalence. Two circuits are func-

tionally equivalent, R ≃ R′, if and only if for all possible inputs, all outputs of R and R′ are

equal.

Problem 1: Circuit Optimization

Given a design in the form of an RTL implementation R, find an RTL implementation R′ that

minimizes cost(R′) for some cost function, such that R ≃ R′.

Problem 2: Circuit Verification

Given two designs in the form of RTL implementations, R1 and R2, mathematically prove that

they are functionally equivalent, R1 ≃ R2, or produce an input (or sequence of inputs) for which

the two circuits produce distinct results (a counter-example).

1.2. Contributions 7

ROVER
Datapath Optimizer

• PPA Models

• Datapath rewrites

ROVERIFY
Verification Assistant

• Verification rewrites

• Proof Decomposition

rtl2egg
RTL Rewriting Library

• Intermediate Representation

• Proof Generation

• Basic Rewrites

• RTL Analyses

Figure 1.4: A diagrammatic representation of the library and tool suite developed.

1.2 Contributions

My PhD can be separated into a set of theoretical contributions and a suite of libraries and tools

that apply the theory to digital circuit design and verification challenges. The theoretical de-

velopments were driven by an objective to express and evaluate hardware specific optimizations

using the e-graph data structure. Firstly, an intermediate representation, VeriLang, is defined.

VeriLang facilitates the representation of RTL using an e-graph and permits the description of

multi-precision transformations, as described in Chapter 3. To further e-graph based analysis

of digital circuits, Chapter 4 takes steps towards formalizing the connection between equality

saturation and abstract interpretation, a key theory underpinning much of program analysis.

To truly automate the techniques used by expert designers, a way to automatically reason

about constraints present within the designs is essential. Chapter 5 introduces an approach to

express sub-domain equivalences within an e-graph, enabling constraint-aware optimization.

Each of the theoretical contributions has been practically realized via a suite of digital circuit

design and verification tools. At the foundation of this suite, is the rtl2egg library, built on-top

of the egg e-graph library [15]. The rtl2egg library provides interfaces to map (System) Verilog

8 Chapter 1. Introduction

to and from the egg library, via the VeriLang intermediate representation. It is also capable

of generating associated proof certificates that can be checked using commercial verification

tools to guarantee the correctness of its output. Beyond interfaces, rtl2egg implements a set

of basic equivalence preserving RTL rewrites and RTL analyses.

A pair of applications are implemented on-top of rtl2egg. First, ROVER, an RTL optimiza-

tion engine targeting word-level datapath circuit designs, initially developed to minimize circuit

area (Chapter 3). ROVER later gained circuit analysis capabilities that leverage the formal

framework described in Chapter 4. Taking advantage of circuit properties discovered via the

analyses, ROVER later optimized circuit performance (Chapter 5) and power (Chapter 6).

The second tool, ROVERIFY (Chapter 7), a formal verification assistant, is capable of au-

tomating proof decomposition for equivalence checking of an RTL implementation against an

RTL specification. The complete software suite is illustrated in Figure 1.4. The remainder of

the thesis will focus on the techniques and applications themselves rather than the software

implementation details.

The most substantial contributions of the thesis are summarized as follows:

• the application of equality saturation to Register Transfer Level (RTL) datapath PPA

optimization,

• multi-bitwidth and multi-signage rewrites that enable datapath design space exploration

capturing the connection between optimal architecture selection and bitwidth,

• an automated method to generate necessary and sufficient conditions for RTL rewrites

using formal verification tools,

• a robust method to verify the correctness of the generated RTL based on automated proof

decomposition,

• a formal framework to enable program analyses on an e-graph,

• an accurate value range analysis for bitvector arithmetic in RTL designs,

1.3. Implementation and Evaluation 9

• a general purpose encoding of multiple equivalence relations and constraint-aware opti-

mization via e-graph rewriting,

• a computationally-efficient methodology to simulate a large set of design choices, lever-

aging the compact e-graph representation,

• a word-level e-graph framework that composes a set of sub-problems from local rewrites

to assist formal verification tools.

1.3 Implementation and Evaluation

The industrial setting in which the research was conducted means that it is not possible to open-

source the software implementation. This action avoids the risk of valuable Intel Intellectual

Property (IP) becoming publicly available, a risk given the use of production Intel designs as

benchmarks. Despite the lack of accompanying software, this thesis discloses the techniques

necessary to reproduce the results presented throughout. In fact, there have already been

several reproductions of elements of this thesis for use as a baseline comparison [16] or as an

optimization engine in a circuit synthesis flow [17].

The research is evaluated using a combination of open-source designs taken from prior works

and Intel-provided closed-source designs. A lack of standard and industrially relevant datapath

benchmarks meant that it was necessary to compile relevant benchmark suites throughout this

thesis. A summary of the benchmarks used is provided in Appendix A. Each chapter motivates

the benchmark selection used to evaluate that project.

1.4 Thesis Outline

The thesis is organized into the following chapters.

Chapter 2 introduces the necessary background on digital circuit design and verification.

10 Chapter 1. Introduction

From the field of programming languages, equality saturation and the theory underpinning

program analysis are both described.

Chapter 3 provides a first introduction to ROVER, describing the foundations of an e-graph

based RTL rewriting framework, which is applied to circuit area minimization.

Chapter 4 formalizes the connection between e-graph rewriting and program analysis. To

demonstrate broader applicability, the theory is used to derive tight bounds on arithmetic

expressions.

Chapter 5 introduces the theory needed to encode constraint-aware optimization within an

e-graph. ROVER is extended to incorporate constraint-awareness allowing the tool to

discover highly optimized floating-point arithmetic components.

Chapter 6 completes ROVER’s understanding of the key circuit design metrics, developing

a power model and associated power reduction rewrites, which are combined with the

existing arithmetic optimizations.

Chapter 7 tackles the verification problem, describing the application of the underlying RTL

rewriting framework resulting in an automated verification assistant, ROVERIFY, and

an automatic bug fixing tool, ROVERIFIX.

1.5 Publications

The research in this thesis has been the subject of the following publications:

ARITH 2022 & TCAD 2024 The first publication of the PhD was presented at the 29th

ARITH and described the foundations of ROVER, presenting an initial application of

equality saturation to datapath synthesis. The conference paper was nominated for a

best paper award but did not win. It was later followed up with a IEEE Transactions

on Computer-Aided Design of Integrated Circuits & Systems (TCAD) journal extension,

which forms the basis of Chapter 3.

1.5. Publications 11

Automatic Datapath Optimization using E-Graphs, Samuel Coward, Theo Drane, and

George A. Constantinides, IEEE 29th Symposium on Computer Arithmetic (ARITH)

2022, best paper candidate

ROVER: RTL Optimization via Verified E-Graph Rewriting, Samuel Coward, Theo

Drane, and George A. Constantinides, IEEE Transactions on Computer-Aided Design of

Integrated Circuits & Systems 2024

SOAP 2023 During a brief interlude from circuit design tools, the connection between equal-

ity saturation and abstract interpretation was explored, resulting in a short paper on

the subject at a program analysis workshop. The workshop paper forms the basis of

Chapter 4.

Combining E-Graphs with Abstract Interpretation, Samuel Coward, George A. Constan-

tinides and Theo Drane, Proceedings of the 12th ACM SIGPLAN International Workshop

on the State Of the Art in Program Analysis (SOAP) 2023

DAC 2023 & TCAD 2024 Returning to circuit design tools, a new objective was set, to

match manual floating-point unit design using automated tools. Such an objective led

to the development of constraint-aware optimization and analysis techniques that were

first published at the 60th DAC, then later followed up with a TCAD journal extension.

These publications form the basis of Chapter 5.

Automating Constraint-Aware Datapath Optimization using E-Graphs, Samuel Coward,

Theo Drane, and George A. Constantinides, 60th Design Automation Conference 2023

Constraint-Aware E-Graph Rewriting for Hardware Performance Optimization, Samuel

Coward, Theo Drane, and George A. Constantinides, IEEE Transactions on Computer-

Aided Design of Integrated Circuits & Systems 2024

FMCAD 2023 The automation of deeper datapath optimizations, highlighted limitations of

the formal verification tools which were relied upon to prove the correctness of ROVER’s

output. To address these limitations, an automated verification assistant, ROVERIFY,

was developed on-top of the rtl2egg library and was presented at FMCAD in 2023. This

paper forms the basis of Chapter 7.

12 Chapter 1. Introduction

Datapath Verification via Word-Level E-Graph Rewriting, Samuel Coward, Emiliano

Morini, Bryan Tan, Theo Drane, and George A. Constantinides, in Formal Methods in

Computer-Aided Design 2023

ARITH 2024 The final project of the PhD considered power optimization as a first class citi-

zen. By combining arithmetic and power optimizations, entirely new optimal architectures

were discovered, that reduce dynamic power consumption at minimal area penalty. The

work was presented at the 31st ARITH and was nominated for a best paper award but

did not win. This paper forms the basis of Chapter 6.

Combining Power and Arithmetic Optimization via Datapath Rewriting, Samuel Cow-

ard, Theo Drane, Emiliano Morini and George A. Constantinides, in IEEE 31st Sympo-

sium on Computer Arithmetic (ARITH) 2024, best paper candidate

Chapter 2

Background

This thesis leverages and extends theory from the programming languages community, apply-

ing it to problems in digital circuit design, with a specific focus on datapath circuit design and

verification. Sections 2.1 and 2.2 provide the necessary background on both manual and auto-

mated approaches to these two challenges. From the field of programming languages, the thesis

builds upon the e-graph data structure and explores how to apply program analysis techniques

to digital circuit design problems. Section 2.3 introduces program analysis and, in particular,

abstract interpretation, a key theory underpinning program analysis. Section 2.4 introduces the

e-graph and equality saturation, providing a review of recent developments and applications in

the area.

2.1 Datapath Circuit Design

Circuit design is often categorized into control flow and datapath design. Datapath circuits

apply pre-defined operations on incoming data to perform some desired computation. Such

circuits are often dominated by arithmetic operators, and the rate at which such arithmetic op-

erations can be performed determines key silicon metrics, for example, floating point operations

per second (FLOPS). Control flow circuits provide the orchestration, determining what oper-

ations the datapath circuits execute and where the computed results are needed. This thesis

13

14 Chapter 2. Background

will be dedicated entirely to datapath design and verification, because such circuits implement

the critical computational elements of a computer chip. However, the general purpose design

techniques presented may also be applicable to control flow circuits.

Digital circuit designs may be physically implemented via programmable logic, for example on

a Field Programmable Gate Array (FPGA), or via an Application Specific Integrated Circuit

(ASIC), which is built to execute some fixed instruction set, for example a Graphics Processing

Unit (GPU). The design of digital circuits must take into account the chosen implementation

platform, since the resource constraints and performance characteristics are highly dependent

upon this choice. As such, ASIC and FPGA design tools have diverged substantially. This

thesis studies the design of digital circuits implemented as an ASIC.

The datapath design background is separated into four subsections. Firstly, Section 2.1.1 re-

views industrial and academic contributions to automated datapath design at the RT-level.

Next, Section 2.1.2 reviews manual datapath design research, as the thesis describes the au-

tomation of many of these techniques. Specializing further, Section 2.1.3 describes low-power

RTL design techniques. Lastly, Section 2.1.4 surveys higher-level techniques for digital circuit

design.

2.1.1 RTL Synthesis

As described in the introduction, RTL is one of the most common design abstractions for digital

circuit design, providing a cycle-accurate description of the circuit’s behavior. RTL is written

using an HDL, most commonly Verilog, System Verilog or VHDL. Such languages allow digital

circuit designers to express low-level functions in terms of Boolean operators, usually called

gate-level design. However, the languages also permit word-level descriptions using arithmetic

operators such as addition and multiplication. For maintainability, portability and ease of

verification, designers are encouraged to write at the higher word-level abstraction. For greater

performance and circuit efficiency, skilled engineers may turn to gate-level implementations that

provide the maximum level of expressibility. In reality, industrial HDL is typically a mixture of

these abstractions. The RTL, described in HDL, is then passed to a logic synthesis tool, which

2.1. Datapath Circuit Design 15

synthesizes a functionally equivalent netlist [18]. The netlist describes the circuit in terms of

low-level cells connected by physical wires, where each cell is comprised of potentially many

transistors.

Industrial, closed-source, logic synthesis tools such as Synopsys’ Design Compiler [8] and Ca-

dence’s Genus [19], currently dominate the semiconductor sector. In the open-source commu-

nity, the Yosys framework is the leading RTL synthesis [9] solution, with a growing ecosystem

based around the OpenRoad project [20].

Efficient datapath design can have a significant impact on PPA, providing opportunities to

share or re-use resources, reduce the logic depth or avoid redundant computations. As in all

compilation tasks, higher-abstractions offer downstream tools greater flexibility and potentially

permit more complex optimization. In particular, for word-level RTL designs, the logic synthesis

tool must determine how to map higher-level operations such as addition into a low-level logic

cells [21]. Such arithmetic components have been the subject of extensive study [22], providing

a huge set of component level implementations to choose from.

Of crucial importance in ASIC designs is the avoidance of carry-propagation, since this is

generally an expensive operation because the circuit must be able to propagate a carry from

the least-significant to the most-significant bit. Carry-propagate adders are typically required at

the output of any arithmetic operation, but can be avoided by deploying carry-save format [21].

Carry-save format stores the output of an arithmetic operation in a redundant format using two

signals, a carry and a save. By grouping arithmetic operations into datapath blocks, the number

of expensive carry-propagate adders can be minimized, replacing them with a compressor tree.

This approach will be described further in Section 2.1.2.

The initial passes in modern industrial logic synthesis tools aim to extract the largest possible

datapath blocks from the design, minimizing the number of carry-propagate adders [23, 21].

A datapath block can be viewed as a sequence of arithmetic operations in a dataflow design

where all intermediate results can be stored in a redundant carry-save format. The success of

this stage of the compilation flow is highly dependent upon the input RTL design, since the

industrial tools do not substantially modify or re-order the word-level dataflow graph. As a

16 Chapter 2. Background

result, the question of how best to formulate the RTL such that synthesis tools can maximally

deploy their optimizations has received some research attention [24]. Industrial logic synthesis

tools do perform some more standard optimizations such as constant folding and sub-expression

sharing [21]. Since these tools are closed-source, understanding their capabilities is challenging.

Automated flows that generate outputs to be consumed by these tools must make design choices

based on a model of the logic synthesis tool’s capabilities. This introduces a correlation problem

between the internal model of logic synthesis and the logic synthesis tool itself.

A notable academic contributor in this field is Dr. Ajay Kumar Verma from EPFL. By using a

set of rewriting rules, Verma and collaborators studied how arithmetic circuits can be re-ordered

to maximally cluster additions together [24]. This approach goes beyond the datapath clustering

described above, minimising the number of carry-propagations by explicitly transforming the

dataflow graph. Many of the transformations described in this paper are incorporated into my

work. Later work by Verma then proposed an approach that ran multiple passes over the circuit

at differing levels of abstraction [12]. The separation of word and bit-level transformations

allows the optimizer to explore beyond a limited local design space. Unfortunately, a pass

based design flow introduces a phase-ordering problem forcing the use of heuristics to guide the

exploration. The phase-ordering problem is discussed in more detail in Section 2.4. The work

described in this thesis, provides a more general framework capable of expressing a broader

range of RTL optimizations using an efficient search mechanism that does not depend on

heuristics. My work also incorporates deeper optimization techniques involving context and

value range analyses, achieving results beyond the capabilities of [24].

A semi-automated RTL design and verification environment has been developed by Carl Seger

and collaborators [25, 26]. The Voss II framework provides a design visualization environment

and proposes an interactive design space exploration approach, where the designer guides the

application of a set of transformations, which are automatically checked.

In addition to this work tackling general circuit design optimization, there are many automated

optimization methods targeting specific design instances. One well studied problem is the Mul-

tiple Constant Multiplication (MCM) hardware design challenge [27, 28]. The MCM problem

2.1. Datapath Circuit Design 17

asks, given a set of integer coefficients {a1, ..., an}, what is the optimal architecture to compute

the set {a1 × x, ..., an × x}, where x is a variable. Competing solutions use a fixed number rep-

resentation of the constants [28], often Canonical Signed Digit (CSD) representation [29], and

or deploy an adder graph algorithm [27]. More recent work has formulated the problem as an

integer linear programming (ILP) problem [30, 31, 32] or as Boolean satisfiability problem [33].

Specialized hardware generators form another class of automatic design tools, targeting spe-

cific problems. Elementary function implementations are typically constructed using hardware

generators, with iterative [34] and piece-wise polynomial approximations being commonly de-

ployed [35, 36]. The clustering of arithmetic operations, as described in Section 2.1.1, depends

on hardware generators producing compressor trees for arrays of arbitrary shape [37, 38]. Mak-

ing these custom hardware components flexible and usable by non-experts is a valuable target

and one which this thesis take steps towards.

More recently, reinforcement learning (RL) has been successfully applied to the design of par-

allel prefix adders by researchers at NVIDIA [39]. By training an RL agent they were able

to automatically generate highly optimized designs of prefix adders for a range of bitwidths.

This technique proved successful and many instances of these generated circuits can be found

in upcoming NVIDIA GPUs. Whilst successful such an approach deployed significant com-

pute resources to optimize a widely used but highly specialized circuit, therefore may not be

generalizable and scalable. A less mature, but potentially promising direction, is using Large

Language Models to generate Verilog [40].

Clearly bespoke approaches will be able to solve such restricted domain optimization problems

much more efficiently than a general approach. However, this raises the question of whether a

more general approach can still reach the optimal solutions obtained by the bespoke method.

This is a relevant question as instances of these specific problems can arise as components of

more complex designs, which may be hidden or emerge during design space exploration. Chap-

ter 3 will describe how to automate higher-level optimizations in an RTL rewriting framework

that mitigates the logic synthesis correlation challenge and avoids the phase-ordering problem.

Such a framework can be extended to incorporate custom solutions to specific problems.

18 Chapter 2. Background

2.1.2 Manual Datapath Design

Despite the large range of automated tools, industrial datapath design and optimization are

often still manual tasks. Whilst this thesis will focus entirely on automated design, a short

background on manual design is included, since the objective is to generalize and automate

the type of optimizations performed by hand [38]. Over many years the computer arithmetic

community has developed a large collection of highly optimized component-level designs. For

example, arithmetic operations such as addition and multiplication are well-studied [22], yet

composing these components and customizing them to the a particular use case remains a chal-

lenge. This section will provide a brief survey of key components that will be used throughout

this thesis, as understanding the underlying architectures will help to guide automated design

decisions.

A first important building block is the full-adder, which takes three input bits and produces

two output bits representing their sum. Such low-level circuits can be composed to construct

higher-level components, for example key datapath circuits to compute bitvector addition. The

simplest and minimal circuit area implementation is a ripple carry adder, where full-adders

are chained together to produce the sum of two bitvectors [22]. Many faster adders have been

proposed [38], but of particular importance is the parallel prefix structure [41] that facilitates the

decomposition into a logarithmic tree structure. Through standard bitvector manipulations,

subtraction can also be implemented using these same structures. The design of addition

circuits is well covered in numerous textbooks [22, 29, 38].

Unsurprisingly, via the schoolbook approach, multiplication can be decomposed into a sequence

of additions. However to improve performance it is most commonly separated into three stages.

First, an array creation stage, where each row of the array represents the product of one operand

with a single (or potentially multiple) bits of the other operand. The height of this array is then

reduced to just two rows using a compressor tree [42, 43], comprised of compressor cells such as

the full-adder [38]. Lastly, a bitvector adder sums the remaining two rows. Once again, there

has been significant research into fast and area efficient multiplication circuits, in particular

looking at alternative encoding schemes to reduce the height of the multiplication array, all of

2.1. Datapath Circuit Design 19

which are covered in textbooks on the subject [22, 29, 38].

These fundamental arithmetic operators can be modified and extended to perform other oper-

ations. Of particular importance is the compound adder [38], which, for minimal overhead can

produce both a+ b and a+ b+1. At first, this may not be obviously useful. However this com-

pound adder can be used to efficiently compute an absolute difference (deployed in Chapter 5)

and an optional pre-rounding for floating-point hardware. More complex components such as

a leading zero counters, detectors and anticipators are also widely used [44], becoming part of

standard IP libraries [45].

Floating-point hardware design increases the complexity once again, introducing an alternative

mathematical meaning to different slices of the input bitvector. In particular, floating-point

addition and subtraction have received significant attention [46, 47, 48]. Beyond single floating-

point operations, there has been interest in larger compound components where rounding can

be deferred to avoid error accumulation [49, 50, 51, 52, 53]. Such components offer a signif-

icant design space to explore, and are typically built by floating-point design experts, who

understand the complex accuracy requirements of their application. This thesis will take steps

towards automating this design space exploration, producing results comparable with manual

implementations.

2.1.3 Low-Power RTL Design

Historically, low-power ASIC design has been the concern of specialized design teams targeting

mobile devices. Today, the rise of power efficient mobile chips and large scale data centers

has ensured that power efficiency is a key objective for almost all ASICs. Digital circuits

consume energy through the charging and discharging of capacitances inherent in CMOS logic

gate design. The rate of energy consumption due to logic gate switching is known as dynamic

power. They also use energy at idle due to leakage currents, known as leakage power. Dynamic

power is the primary concern for RTL designers, since leakage power is more heavily influenced

by lower-level design choices, such as cell selection.

20 Chapter 2. Background

A
B
C

S

1

0
out

∗

Figure 2.1: An operand isolation opportunity. The input to the multiplier can be data gated
when the select signal is one, as shown by the red gate. The negated select signal, ∼ S is a
common input to an array of AND gates equal to the bitwidth of C.

Power optimizations can be broadly separated into two groups. First, a set of optimizations

that primarily target circuit area reduction, since there is a correlation between circuit area

and dynamic power consumption. This is intuitive because a smaller circuit area corresponds

to fewer gates and thus fewer gates to toggle. The second set of optimizations detects opportu-

nities to switch off, or gate, sub-circuits in the design. Clock gating and operand isolation are

two such optimizations. For a clock gating example, consider a pipelined floating-point adder

in which exception cases, e.g. NaNs, are handled on a separate exception path. If an excep-

tional input is detected in the first stage, all registers on the standard input path can be gated

for subsequent stages, since the result is redundant. Gating the registers stops the register

outputs changing and hence prevents any toggling of the downstream combinational logic. The

additional gating logic adds an area (and possible delay) overhead which must be evaluated

alongside the data-dependent power saving. For an operand isolation example, consider Fig-

ure 2.1. In this circuit the multiplier is a redundant operation, so one of its inputs can be zeroed

using an activation signal, limiting operator power consumption. We refer to this technique as

data gating. Alternatively, both multiplier inputs could be “frozen” using transparent registers

to eliminate redundant toggling [54, 55]. The transparent register is a synchronous component

that has an enable signal, which, when high, allows the input to transparently flow through to

the output. When low, the transparent register outputs the same signal as the previous clock

cycle. Prior work has often implemented a transparent latch, which is a similar, asynchronous

component, that instantly freezes a signal value when disabled [54, 55].

In academia, clock gating has been explored at a gate-level [56] and from a clock tree synthe-

sis perspective [57]. A subset of industrial tools, such as Synopsys Power Compiler [58] and

2.1. Datapath Circuit Design 21

Cadence Joules [59], are incorporated into their proprietary logic synthesis engines and auto-

matically perform clock-gating optimizations. The Synopsys synthesis tools also take operand

switching frequencies into account when selecting arithmetic components, for example when de-

ciding which multiplier operand to Booth encode [21]. Siemens PowerPro [60] is a standalone

RTL to RTL tool that targets sequential clock gating. A limitation of these approaches is that

they rely on analyzing the mux tree structure of the RTL design, which may miss opportunities

as we shall see in Section 6.1.2. The automation of operand isolation has been explored at both

the word-level [54] and at gate-level [55, 61], typically adding additional operators to a netlist

in-order to reduce switching activity.

RTL power analysis tools typically rely on simulation to estimate power consumption of a given

design. Tool users can either provide simulation stimuli or set input switching activities and

static probabilities [58, 59]. For a given simulation period, the switching activity describes how

frequently each bit of the given signal transitions from zero to one or vice versa, and the static

probability specifies what proportion of the time that bit is expected to be in the one state.

Commercial logic synthesis tools [8], take user provided simulation configurations and perform

power optimizations guided by the simulation.

Much of the academic community appears to have lost interest in RTL power optimization,

with few papers published in this area over the last decade. Chapter 6 attempts to reverse

this trend, describing how to encode the power optimizations discussed above as local RTL

rewrites and a framework to explore and evaluate the combination of power, arithmetic and

area optimizations.

2.1.4 High-Level Synthesis

Whilst not the primary focus of this thesis, HLS provides an alternative design flow that aims

to resolve many of the challenges discussed in this thesis. HLS aims to substantially raise the

abstraction level of hardware design by allowing engineers to specify their circuits in languages

like C. HLS tools automatically map a high-level software program into a custom hardware

design in a low-level HDL, e.g. Verilog. A production HLS development flow comprises three

22 Chapter 2. Background

steps. First, a high-level specification of an algorithm is manually rewritten following the

recommended coding guidelines producing code that is amenable to optimization by the HLS

tool. Second, the rewritten HLS program usually contains design constraints expressed via

inline directives or pragmas to exploit hardware parallelism and resource sharing. The process

of exploring these constraints is already semi-automated [62, 63, 64]. Finally, the optimized

design constraints are sent with the HLS program to the HLS tool, which synthesizes a hardware

design. The HLS tool automatically performs certain hardware optimizations, such as hardware

scheduling and binding, which maps the start times of operations into clock cycles with efficient

hardware resource sharing [65, 66, 67, 68]. The HLS tool also performs register retiming to

achieve a high clock frequency [67, 68]. HLS tools are less mature than logic synthesis tools,

with industrial leaders being Cadence’s Stratus for ASIC design [6] and Vitis HLS for FPGA

design [7]. In the open-source domain, LegUp [5] and Bambu [69] have been the subject of

sustained research efforts.

The resulting RTL description can be fed into logic synthesis to produce a final netlist. Once

again designers are faced with a problem. How to formulate the C-code such that the tool can

best optimize it? Approaches such as graph neural networks [70] and genetic algorithms [71]

have been applied to this problem. Both these works provide an alternative way to answer the

tool correlation questions tackled in this thesis, albeit at a lower abstraction level.

Several works have even looked at how to deploy e-graphs in the HLS flow, with one work

studying the decomposition of large multipliers [72]. Although not discussed in this thesis,

with collaborators, I recently explored the application of techniques discussed in this thesis to

HLS code optimization [73], integrating the e-graph into a mature software compilation stack.

2.2 Datapath Formal Verification

The design of digital circuits generates an equally important associated challenge, to determine

the correctness of a given implementation. Formal verification is a mathematical approach to

proving the correctness of a circuit for all possible input sequences, under some assumed oper-

2.2. Datapath Formal Verification 23

ating conditions. For industrial scale circuits, such correctness guarantees cannot be obtained

via simulation since the input space is too large to exhaustively test. Formal verification of

datapath circuits is particularly challenging as they are subject to intense optimization effort,

both automated and manual, in the design phase.

Classic formal property verification methods successfully used to verify state machines and com-

munication protocols are not able to verify datapath dominated circuits. During the 1990’s a

number of Theorem Proving [74, 75, 76, 77, 78] and Symbolic Trajectory Evaluation (STE) [79]

approaches were developed. These techniques involved comparison against mathematical spec-

ifications, often taken from industry standards, e.g. The IEEE Standard for Floating-Point

Arithmetic [80]. Whilst capable of verifying complex designs, Theorem Proving and STE suf-

fered from common downsides, a high barrier to entry and maintenance of complex code bases.

One relevant work overcomes the barrier to entry by combining rewriting and theorem proving

to automatically verify the correctness of gate-level multiplier designs in RTL [81, 82]. In this

work, the authors deploy ACL2 verified [83] rewrites to transform optimized implementations

into normalized implementations.

In the last decade, the circuit design industry has converged on equivalence checking (EC),

defining two circuit representations to be equivalent if for all valid inputs they generate identical

outputs. EC has been used in several contexts in the semiconductor industry [84, 85]. The

most popular types of EC are Boolean, Sequential and Transactional. This thesis primarily

focuses on Transactional EC of combinational circuit descriptions, where the result of a given

computation in the implementation is compared against the result of the same computation in

the trusted specification. The output of the comparison can be Pass, when a property is proven,

Fail, when the property is not true (a counterexample is generated), or Inconclusive, when the

tool does not manage to either prove or disprove a property. This setup is illustrated in Figure

2.2. Sequential EC is instead usually used to compare a version of the RTL against an altered

one, for example when performance optimizations are introduced (such as clock gating) or small

algorithmic changes are implemented. In this case, the cycle-accurate equivalence of the two

designs is verified. Boolean EC targets gate-level verification, often comparing a synthesized

netlist to an RTL implementation.

24 Chapter 2. Background

Specification
design

Implementation
design

Constraints
and lemmas

EC Tool

InconclusivePass Fail (cex)

Figure 2.2: The inputs of an EC tool are two designs, a specification and an implementation,
a set of constraints to drive the possible values to tests and a set of lemmas to prove. Each
lemma can pass, fail or be inconclusive. A counterexample (cex) is provided for each failing
lemma.

A trusted reference is fundamental for EC. One standard verification flow used in the semi-

conductor industry is the following: starting from a component specification, a developer writes

a high-level reference C++ design without any interaction with the designer who writes the

RTL implementation, providing diversity and independence between the two, which are then

formally tested for equivalence. Many more tests can be run on the C++ code, due to the

great difference in simulation speed between C++ and RTL. Furthermore, given the lack of

low-level optimizations in this type of code, it is easier to identify the hard corner cases and

test them thoroughly. If the EC tool passes but there is a bug in the implementation, it would

require the same bug to be encoded independently in both models, which are written in differ-

ent programming languages and at a different level of abstraction. This is usually described as

C2RTL EC [10]. Another option is RTL to RTL EC, where the reference is a trusted version

of the same design in RTL [86], usually an earlier version or based on a third-party library like

Synopsys’ DesignWare [8].

Automated EC tools have been developed in academia [87] and industry [86, 88], all of which

rely on orchestrating a suite of proof engines to prove the formal equivalence of the implementa-

tion and specification. In academia, SymbiYosys is built on the Yosys synthesis tool, providing

an integrated verification environment. For datapath verification, SymbiYosys produces encod-

ings in bitvector theories then relies on Satisfiability (SAT) and Satisfiability Modulo Theories

2.3. Program Analysis 25

spec impl

w1 w2 · · · wn

Figure 2.3: The waterfall approach used by FV engineers. The dashed line between spec and
impl represents an inconclusive verification. Convergence is achieved introducing n intermediate
designs wi and proving the equivalences of all the pairs (spec, w1), (w1, w2), . . . , (wn, impl).

(SMT) solvers, such as CVC5 [89] and Z3 [90]. Industrial tools, such as Synopsys’ Datap-

ath Validation (DPV), Cadence’s Jasper [10] and Siemens’ SLEC [88], are more sophisticated

and incorporate a range of proof engines, SAT, SMT, binary decision diagrams (BDD) and

rewriting, to prove the equivalence of the two designs. This orchestration layer above the proof

engines facilitates problem partitioning and decomposition, yielding greater capabilities than a

single engine alone.

Despite significant advances in Formal Verification (FV) tools, inconclusive results are com-

monplace in practice and require advanced techniques to achieve full convergence, occupying

most of the FV engineer’s time. A common approach is to generate a “waterfall”, where the

verification between implementation and specification is decomposed into a sequence of EC

proofs by introducing intermediate designs, as shown in Figure 2.3. If all the intermediate

equivalence steps are proven, the equivalence between specification and implementation holds.

Throughout this thesis, automated proof decomposition is repeatedly utilized to provide robust

FV certificates. Chapter 7 explores an enhancement to the EC tools themselves, since even

small examples can prove challenging for existing tools.

2.3 Program Analysis

To generate competitive hardware designs it is necessary to learn certain properties of a pro-

gram or design. Traditional compilers separate program analysis and optimization into distinct

passes, where the analysis may enable or prove the validity of deeper optimizations, for ex-

26 Chapter 2. Background

ample dead code elimination [91, 92]. A widely used theory underpinning program analysis

is abstract interpretation (AI), which over-approximates program properties using an abstract

domain [93]. An element in an abstract domain typically represents a set of possible program

properties. This element over-approximates a program’s properties if the concrete properties

of the program are a subset of the possible properties represented by the abstract element.

AI is used in static program analysis [94], where the program is analyzed without being exe-

cuted. Based on lattice theory, it is a theory for computing sound approximations of program

properties.

A general objective of static analysis tools is to efficiently compute abstractions that provide an

accurate over-approximation of the concrete program properties. Cheap to compute interpre-

tations typically over-approximate, sacrificing accuracy for computational efficiency. A simple,

but relatively weak, interpretation is interval arithmetic, approximating numerical variables

by their possible input ranges, and operators by their natural interval extension. Knowledge

of these variable ranges may enable further optimizations or prove the absence of dangerous

behavior, for example division by zero. To reduce the coarseness of the over-approximation,

existing tools have incorporated term rewriting to discover “analysis-friendly” program repre-

sentations [95], since alternative program representations yield distinct abstract interpretations.

For example, consider two integer variables a ∈ [0, 1] and b ∈ [−2, 1], an interval interpreta-

tion of equivalent expressions a× b− b and (a− 1)× b yields [−3, 3] and [−1, 2], respectively.

Chapter 4 will explore the theory underpinning the combination of e-graphs and program anal-

ysis. This exploration is one contribution to work deepening the connection between abstract

interpretation and compilation [96].

Capturing constraints in an abstract interpretation is typically more computationally expen-

sive and involves analyzing relational domains. Prior work has combined constraint-awareness

with interval arithmetic [97], which shall also be combined and applied to RTL optimization

in Chapter 5. This thesis will take inspiration from [98], where the authors introduce special

ASSUME operators, that couple sub-programs with the constraints (introduced by control struc-

tures) which can be assumed upon evaluation. This coupling facilitates abstraction refinement,

yielding a more precise abstraction.

2.4. E-Graphs and Equality Saturation 27

In hardware design, existing HLS [6, 7] and verification tools [86] are known to compute a value

range analysis. Interval arithmetic of RTL has been combined with SAT to aid circuit verifica-

tion [99]. In general, there are far fewer RTL analysis tools than can be found in the software

domain, with great emphasis placed on verification and simulation tools. This thesis will make

extensive use of RTL program analysis, to enable deeper optimizations. The interaction be-

tween RTL analyses and optimization has been explored using model checking [100], although

this represents a relatively specific solution that sought to remove unutilized handshake logic.

2.4 E-Graphs and Equality Saturation

The thesis builds on a core data structure, the e-graph, and leverages an associated program op-

timization technique, equality saturation. First proposed by Nelson [101], equivalence graphs,

commonly called e-graphs, provide a compact representation of equivalence classes (e-classes)

of expressions. Often found in theorem provers [90, 89], this data structure enables a graph

optimization technique called equality saturation [15, 102, 14]. The e-graph represents expres-

sions, where the nodes, known as e-nodes, represent function symbols (including variables and

constants, as 0-arity functions) and are partitioned into a set of e-classes, with respect to an

congruence relation, ∼=. The intuition is that e-classes can be used to compactly represent

equivalent expressions. Edges represent function inputs and are from e-nodes to e-classes; see

Figure 2.4, where dashed lines represent e-class boundaries, solid ellipses are e-nodes and arrows

denote operator arguments. This representation intuitively captures the local choice of how to

implement a given subset of the program.

2.4.1 Equality Saturation and Rewriting

Equality saturation is based on the theory of uninterpreted functions, where operators only

gain meaning via rewrites and analyses defined on them. Rewrites, ℓ → r define equivalent

expressions such that when ℓ is matched in an e-graph, a process known as e-matching [103], the

expression r gets added to the same e-class. For example, for any expression x, x+ x → 2× x

28 Chapter 2. Background

(a) Initial e-graph contains
(2× x) >> 1

(b) Apply x× 2i → x << i (c) Apply (x << s) >> s → x

Figure 2.4: An example of how rewrites can be applied to an e-graph representing standard
integer arithmetic. The dashed boxes represent equivalence classes. Green nodes represent
new nodes added as a result of a rewrite, whilst the red dashed boxes just highlight which
equivalence class has grown.

encodes the equivalence x+ x ∼= 2× x in the e-graph. Such rewrites are applied constructively

to the e-graph, meaning that the left-hand side of the rewrite remains in the data structure,

avoiding the concern of which order to apply rewrites in. As rewrites are applied, the e-graph

grows monotonically, representing more and more equivalent expressions, and hence naturally

capturing the interaction between different rewrite rules. When a rewrite is applied, a pair of

e-classes may be merged. To maintain the congruence relation, this merging is propagated via

congruence closure. For example, if an e-graph contains terms f(x) and f(y), and a rewrite x →

y is applied, the x and y equivalence classes are merged. This rewrite implies, by congruence,

that f(x) ∼= f(y) and hence the equivalence classes containing f(x) and f(y) should be merged.

Rewrite rules, and in particular conditional rewrite rules will play a central role throughout

this thesis. A conditional rewrite is of the form ϕ ⇒ ℓ → r, where ϕ denotes some predicate.

For example x ̸= 0 ⇒ x/x → 1. Such rewrites require the e-graph construction algorithm to

determine whether the rewrite is applicable for each matching instance [15].

In traditional compilers, determining an optimal order in which to apply transformations is

known as the phase-ordering problem [92]. The key idea behind equality saturation is to defer

this ordering choice and efficiently explore all possible rewrite schedules. Whilst potentially

computationally expensive, equality saturation provides us with a stopping condition. At the

point where further rewrites add no additional information, we say that the e-graph has sat-

2.4. E-Graphs and Equality Saturation 29

Input
Expression

Initialize

E-Graph

Apply Rewrites

Extract
Optimized
Expression

Figure 2.5: A typical equality saturation flow, where rewrites are iteratively applied in a loop.

urated. From an e-graph representing potentially infinitely many equivalent expressions, the

best expression is selected via a process known as extraction [15]. Typically this choice is driven

by an application specific cost model, imposing an order on the expressions. A simple greedy

extraction method selects the e-node of lowest cost from each e-class. Figure 2.5 provides an

overview of a standard equality saturation flow.

One limitation of the e-graph is that all rewrites define equivalence with respect to the same

equivalence relation, making it a challenge to express constraint-aware optimizations. Consider

the following expression containing an arbitrary function f .

(x > 0 ? f(abs(x)) : 0) ∼= (x > 0 ? f(x) : 0) (2.1)

Whilst these two expressions are clearly equivalent, it is difficult to express via local rewrites

since, in general, the rewrite abs(x) → x is not valid. However, the constraint-aware rewrite

x > 0 ⇒ abs(x) → x is always valid. To resolve this conflict, one prior work proposes “Colored

E-Graphs” [104]. In a colored e-graph, different equivalence relations (each represented by a

different color) are layered on the e-graph, creating a hierarchy, at the expense of complexity in

modifying the underlying congruence closure algorithm. Chapter 5 proposes a simpler approach

to encode context in the e-graph without modifying the e-graph data structure. More recently,

there has been work to unify these approaches to encoding context within the e-graph [105],

viewing the collection of sub-domain equivalence relations as a lattice structure.

30 Chapter 2. Background

2.4.2 Egg

egg is a recent e-graph library, which is intended to provide a general purpose and reusable

implementation [15]. It adds powerful performance optimizations over existing, usually bespoke,

e-graph implementations along with some useful additional features. To build a functioning

e-graph optimization tool egg must be supplied with a language definition – that is a set of

operator names together with their arity and an operator cost, and a rewrite set – that is a set

of equivalences over the given language definition.

egg handles the search for rewrite opportunities, a process known as e-matching [103], merging

the new terms into the matched e-classes. The library also implements an efficient congru-

ence closure algorithm [101], to maintain the congruence relation throughout the e-graph. A

performance enhancement introduced by egg is to apply rewrites in iterations, detecting a set

of valid rewrites and inserting the new terms, but only propagating these new equivalences

(via congruence closure) through the e-graph at the end of each iteration [15]. This invariant

restoration process is called rebuilding by the egg authors. The performance benefit comes

from the de-duplication of updates to the underlying data structures [15].

The e-graph is grown until some computational limit is reached, often a user-specified number of

iterations, or saturation is reached. In many applications, the objective is to produce the “best”

equivalent expression. To select the best expression from the final e-graph, egg implements a

default greedy extraction method. It traverses the e-graph working bottom-up towards the root,

using the supplied local cost function to choose the best equivalent node from each equivalence

class. The cost function is local, as the node cost is only a function of the node itself and its

children. The best expression is then given by the node with the lowest cost that is found in

the same equivalence class as the original root of the initial e-graph.

The egg library adds two features on-top of the basic equality saturation engines, that will

be used throughout this thesis. Firstly, e-class analysis allows users to implement program

analyses on the e-graph. Analysis data can be attached to each e-class, lifting an abstract

interpretation to the e-graph level. Given an abstract interpretation defined on the expressions

2.4. E-Graphs and Equality Saturation 31

represented in the e-graph, abstract elements can be combined using the semi-lattice meet

or join, depending on the analysis objectives. The consequences of this combination will be

investigated in Chapter 4. Previous work introduced a congruence closure abstract domain, that

raised constraint reasoning to the level of e-classes, improving the precision of static analyses

tools [106].

The second valuable feature is the ability to produce proofs [107]. Given two expressions

represented within the same e-class, egg is able to produce a sequence of rewrite applications

that map one expression to the other. Such a feature is valuable for providing a certificate

that can be checked independently to verify the equivalence of two expressions derived from

an e-graph. This thesis relies on this feature to provide a robust formal certificate that can be

checked using industrial tools.

2.4.3 Applications

E-graphs were invented in the 1980’s for use in the theorem proving community [101]. To this

day, e-graphs are a key data structure utilized by SMT solvers [90, 89], retaining a collection

of equivalence facts to be combined and added to by specific theory engines. The equality

saturation approach and application to optimization problems was more recently proposed [14].

Much of the recent research into applications and extensions to equality saturation have been

fueled by the release of the egg library.

The earliest users of egg were the Herbie developers [108, 15]. Herbie is a tool that uses

equality saturation to automatically improve the numerical stability of floating-point programs.

Replacing Herbie’s original custom equality saturation implementation with egg yielded over a

3000x runtime improvement, inspiring other applications to build on the egg library.

A comprehensive survey of recent e-graph research developments and applications is beyond

the scope of this background, so only a few notable applications will be highlighted. In linear

algebra, equality saturation has been used to optimally map programs onto vector proces-

sors [109, 110] and optimize linear algebra kernels for machine learning [111]. In the field of

32 Chapter 2. Background

compilers, equality saturation has been integrated into the industrial open-source Cranelift

compiler [112], where the developers introduced a novel representation of control-flow in an

e-graph. In the program synthesis community, equality saturation has been leveraged to syn-

thesize efficient rewrite rule sets [113] further developing their methodology to target specific

workloads [114].

In the hardware domain, there is a growing interest in the application of e-graphs to hardware

design challenges as a result of the work presented in this thesis and other work published

at the same time. At the lower level, equality saturation helped to minimize gate count in

logic synthesis [115] and improved the results in hardware synthesis challenges [17]. Whilst at

a higher abstraction level, egg was used within FPGA HLS to determine optimal multiplier

decomposition [72] and in ASIC HLS to combine loop-level and datapath optimizations [73].

The ability to generate diverse hardware mutations also led to applications in fault tolerant

hardware design [116]. In addition to these research contributions, there have been a number of

position papers presented that advocate for the wider adoption of e-graph techniques to address

hardware challenges [117, 118]. The contributions described in this thesis represent some of the

earliest work in this research direction.

Chapter 3

Circuit Area Minimization via Verified

E-Graph Rewriting at the RT-Level

This chapter describes an automatic equality saturation based approach to address the circuit

optimization problem described in Section 1.1, specifically targeting circuit area minimization.

Starting from a behavioral RTL design, the technique automatically generates an optimized

RTL implementation and accompanying proof certificate that can be formally checked to guar-

antee that the implementation is functionally correct. The generated implementation is passed

to an industrial logic synthesis tool, producing a netlist from which relevant circuit quality

metrics can be extracted. In the context of the given tool chain, the optimization objective

is to generate RTL that the logic synthesis tool can synthesize into the minimal area netlist

representation.

Phrasing RTL optimization as an equality saturation problem introduces a number of chal-

lenges. First, how can RTL designs be represented in an e-graph? Second, what is a sufficiently

general and expressive set of rewrites that capture manual RTL optimization? Third, having

grown an e-graph of equivalent design candidates, how should the implementation correspond-

ing to the minimal area netlist be selected, ensuring that the selection is well correlated with

the downstream logic synthesis tool? Finally, having generated an optimized implementation,

how can the correctness of the design be formally proven using a robust methodology?

33

34 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

Input
Verilog

Slang

JSON

ROVER Front-End

VeriLang

egg

E-Graph

Rewrite

Extraction

VeriLang

ROVER Back-End

Opt.
Verilog

Proof Production

VeriLang

ROVER Back End

Intermediate
Verilog 1

Intermediate
Verilog 2

· · · Intermediate
Verilog n

EC EC EC

Figure 3.1: Flow diagram describing the operation of ROVER. The intermediate RTL designs
are formally verified to be functionally equivalent using EC forming a chain of reasoning. The
orange boxes denote the novel contributions.

This chapter is organized as follows. Section 3.1 describes an intermediate language that

facilitates the representation of RTL as an e-graph. Then, Section 3.2 describes a set of mixed

precision rewrites that encode manual RTL optimizations, and capture the dependence between

circuit area and bitwidth. A data-driven approach to synthesizing rewrite validity conditions

is also introduced. Section 3.3 describes how the minimal circuit area design is extracted from

the generated e-graph, capturing downstream logic synthesis optimizations to ensure better

correlation. A robust, proof decomposition based, verification methodology is described in

Section 3.4. The approach is evaluated through the development of an RTL optimization

tool, ROVER, capable of matching matching manual RTL design and correctly encoding the

downstream logic synthesis capabilities. Figure 3.1 provides an overview of the ROVER tool

flow. Sections 3.5 and 3.6 conclude with the results of applying ROVER to a range of arithmetic

circuit design benchmarks.

The work described in this chapter was first published at ARITH in 2022 [119], and was later

followed by a 2024 journal extension published in TCAD [120]. The primary contributions

described in this chapter are:

• the application of e-graph rewriting to RTL datapath optimization,

• a multi-bitwidth and multi-signage rewrite set that enables datapath design space explo-

ration capturing the connection between optimal architecture selection and bitwidth,

3.1. Intermediate Representation 35

Table 3.1: VeriLang operators including the architecture used for theoretical cost assignment.
Operators above the dashed line are those that directly translate from Verilog, whilst those
below are custom operators that allow VeriLang to capture downstream optimizations. The
“Component Architecture” describes the implementation assumed by ROVER when estimating
the cost of each operator. For example, all adders are assumed to be implemented using a prefix
adder. During logic synthesis an alternative implementation may be chosen.

Operator Symbol Arity Component Architecture

Add/Sub +/- 2 Prefix Adder (PA) [41]
Negation - 1 PA
Multiplication × 2 Booth Radix-4 [22]
Reduce &, |,̂ 1 Log Tree
Inverse Reduce ∼ &,∼ |,∼ˆ 1 Log Tree
Shifting ≪,≫ 2 Mux Tree
Multiplexer ·?· : · 3 Mux Gates
Concat/Repl {, } n Wiring

Comparison
==, ! =
<,≤ 2 PA
>,≥

Range Select slice 1 Wiring
Sum SUM n CSA and PA
Muxed Mult Array MUXAR 3 Reduction and PA
Fused Mult-Add FMA 3 Booth Radix-4

• an automated method to generate necessary and sufficient conditions for RTL rewrites

using an EC,

• a robust method to verify the correctness of the generated RTL based on automated proof

decomposition.

3.1 Intermediate Representation

RTL exploration via e-graph rewriting is facilitated by an intermediate language, VeriLang,

which when combined with a parser and generator permits translation to and from Verilog/Sys-

tem Verilog [2]. Since e-graphs work with expressions, VeriLang is a nested S-expression lan-

guage in Common Lisp [121]. A formal description is given in Grammar 3.1.

As an example, in VeriLang, an 8-bit unsigned addition, stored in a 9-bit result would be

36 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

expressed as:

(+ 9 8 unsign x 8 unsign y). (3.1)

The VeriLang semantics interprets terms as integers.

J·K :term → Z (3.2)

The semantics are then defined in terms of integer arithmetic:

J(op w w1 s1 t1 . . . wn sn tn)K = (3.3)

(JopK Jt1Kw1,s1 . . . JtnKwn,sn)w,unsign (3.4)

where JopK denotes the standard interpretation of op acting on integers and for k ∈ Z, w ∈ N

and s ∈ {unsign, sign},

kw,s =







k mod 2w, if s == unsign

2(k mod 2w−1)− (k mod 2w), otherwise.

(3.5)

This is a valid model of bitvector arithmetic under the least positive residue definition of

modulus [122].

· mod · : Z× N → N (3.6)

Under these semantics, (3.1) has the following interpretation:

(
+

(
JxK mod 28

) (
JyK mod 28

))
mod 29.

Type annotations are essential, since Verilog is a context determined language. The signage

of an operator is determined by the signage of its input operands. For this reason there is no

signage annotation for the output of an operator in VeriLang. The bitwidth of an operator is

determined by the bitwidth of the largest operand, including the left-hand side of an assign-

ment [2]. Therefore VeriLang includes a bitwidth annotation for the output of an operator

3.1. Intermediate Representation 37

term ::= (op width [arg] . . . [arg])
| var | int

arg ::= width signage term

width ::= var | int

signage ::= var | unsign | sign

Grammar 3.1: VeriLang grammar definition. The terminal variable var is a symbol drawn
from a set of expression variables, and op is an operation from the supported set of VeriLang
operators as described in Table 3.1.

in VeriLang. Only the subset of VeriLang expressions comprised of concrete instances of the

width and signage type parameters, meaning these cannot be variables, can be translated to

synthesizable Verilog.

Since e-graph rewriting is based on the theory of uninterpreted functions, operators take on

meaning via rewrites that define equivalent implementations. VeriLang is designed with rewrites

in mind, making it simple to express conditional and dynamic rewrites with access to all the

relevant parameter values. Section 3.2 describes how ROVER’s rewrites differentiate between

type annotations and variables. Type annotations are also essential for accurate hardware

costing, since an 8-bit addition should be cheaper than a 32-bit addition.

VeriLang currently supports almost all the fundamental Verilog operators, with the exception

of less commonly used operators such as trigger (->), modulus (%) and power (**), though

these could easily be added. In total VeriLang supports 29 of the Verilog defined operators as

shown in Table 3.1, which omits the single gate operators that are also supported.

In addition to the Verilog operators, VeriLang supports a set of custom operators as described

in Table 3.1, which capture the optimization capabilities of modern ASIC logic synthesis tools.

These additional operators greatly improve correlation between ROVER’s cost model and the

final circuit cost reported by commercial synthesis tools [21]. The SUM operator encodes how

multiple additions can be clustered into a single carry-save adder (CSA) allowing the circuit to

deploy fewer expensive carry-propagate adders. These clustering nodes are typically valuable

but may not be useful if an intermediate result is required. Figure 3.2 shows two consecutive

additions being reduced to a single SUM node. VeriLang includes two further merged operators,

the familiar Fused Multiply-Add (FMA), which encodes the ability to construct the circuit for

38 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

(a) Consecutive adders (b) Merged adders encoded as SUM

Figure 3.2: There is no datapath leakage as the intermediate adder result retains the potential
carry-out, therefore the adders can be merged. Edge labels show the operand’s index and
bitwidth in square brackets.

a ∗ b + c using a single carry-propagate adder and the Muxed Mult Array, which encodes the

synthesis optimization for a × b + ā × c as described in [21]. The Muxed Mult Array will be

discussed further in Section 3.2.

As shown in Figure 3.1, the input Verilog/System Verilog is first parsed by the open-source

slang parser [123], generating a JSON representation. The ROVER front-end then translates

this JSON representation into a VeriLang expression. From this VeriLang expression egg gen-

erates an initial e-graph, where each e-class contains a single node. In the initial translation

phase, ROVER constructs a mapping from the original variable names to their corresponding

VeriLang expressions. By attaching the variable name to the corresponding e-classes, ROVER

retains information from the original RTL, which can be used during code generation (Sec-

tion 3.3.3) to improve readability.

3.2. Rewrites 39

3.2 Rewrites

3.2.1 Specifying Rewrites

Rewrites define local equivalences between two expressions that, when chained, enable archi-

tectural exploration. Equivalence is defined as functional equivalence over terms in VeriLang.

Namely, given terms t1 and t2, t1 ∼= t2 if and only if for all possible inputs t1 and t2 produce

identical outputs under the semantics of VeriLang. A rewrite is defined as a transformation

from a term to a term. Note that rewrite pattern terms may contain free variable bitwidth

and signage type parameters. This is analogous to using parameterizable bitwidths in Verilog

as opposed to concrete integer values.

Via the e-matching process described in Section 2.4, egg matches a term in the e-graph return-

ing a substitution that is an assignment of the variables in the term to e-classes. Following

the VeriLang semantics ROVER processes this substitution, producing a map that is an assign-

ment of (some of the) variables in the term to concrete values, mostly bitwidth and signage

parameters. A partial evaluation of a term with respect to a map produces a new term,

J·K· : term× map → term.

As a first example, consider the unconditional commutativity rewrite that is always valid. Later

examples will describe conditional rewrites. Commutativity of addition is defined as:

lhs
︷ ︸︸ ︷

(+ w wa sa a wb sb b) →
rhs

︷ ︸︸ ︷

(+ w wb sb b wa sa a) .

40 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

If applied to an e-graph containing (3.1), the e-matching process would return a map,

m =







w 7→ 9

wa 7→ 8

sa 7→ unsign

wb 7→ 8

sb 7→ unsign

(3.7)

Note that m is a partial function because it does not provide any assignment for variables a

and b. This approach differs from other e-graph based applications, in that a single rewrite

encodes a rewrite over many distinct types. Previous work encoded types in the operator name

itself e.g. +16 and ×32 [72], but in our setting this is impractical due to the large number of

operators that would have to be supported. The partially evaluated term, JrhsKm is then added

to the e-graph, where

JrhsKm = (+ 9 8 unsign b 8 unsign a).

For this simple commutativity example, the rewrite is valid anywhere that it matches. However,

the set of RTL rewrites for which this statement holds is small. Meaningful RTL transformations

are defined via a set of conditionally applied rewrites specified as a triple (cond, term, term),

where

cond : map → Bool.

The condition is checked each time the left-hand side term of a rewrite is matched. The partially

evaluated right-hand side is only added to the e-graph if the condition returns true. That is,

the condition for correctness of a conditional rewrite (ϕ, lhs, rhs) is that for any map m:

ϕ(m) ⇒ JlhsKm ∼= JrhsKm. (3.8)

Figure 3.3 provides an example to highlight where the validity of a rewrite can depend on the

context. Specifically, the associativity rewrite is valid in the case where the intermediate signal

3.2. Rewrites 41

wire [7 : 0] A, B, C;
wire [7 : 0] add 8b i t ;
wire [8 : 0] add 9bit , add r i gh t ;
wire [9 : 0] l e f t 1 , l e f t 2 , r i g h t ;

assign add 8b i t = A + B; // carry−out d i s carded
assign l e f t 1 = add 8b i t + C;

assign add 9b i t = A + B; // carry−out r e t a ined
assign l e f t 2 = add 9b i t + C;

assign add r i gh t = B + C;
assign r i g h t = A + add r i ght ;

Figure 3.3: Verilog associativity rewriting example. Signals left1 and right are functionally
distinct, because the carry-out is discarded in computing add 8bit, therefore left1 ̸→right.
The signals left2 and right are functionally equivalently, therefore it is valid to rewrite
left2→right.

has sufficient precision to retain the carry-out of the first addition.

Conditional rewriting allows ROVER to detect all syntactic opportunities to apply a transfor-

mation and then filter out those that would be semantically invalid. Such an approach allows

ROVER to capture a wide range of RTL transformations without sacrificing correctness. Sec-

tion 3.2.2 describes the construction of the conditions and returns to this example to construct

a condition for this exact associativity rewrite.

The set of rewrites described in Table 3.2 captures optimizations learnt from Intel’s Graphics

Hardware Group, prior work [24] and logic synthesis documentation [23, 21]. All rewrites

include the type annotations described in Section 3.1. No restrictions on the bitwidth and

signage parameters are imposed in the rewrites, to ensure maximum generality of the rewrites.

In Table 3.2 bitwidth and signage annotations as well as the conditions are omitted to maintain

readability.

ROVER combines both static rewrites, where the right-hand side is known at compile time, and

dynamic rewrites, where the right-hand side is constructed at runtime. Dynamic rewrites are

particularly useful for constant manipulation, building normal forms and computing sufficient

bitwidths.

The first group, bitvector arithmetic identities, contains familiar arithmetic rewrites allowing

42 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

Table 3.2: ROVER’s bitwidth and signage dependent datapath rewrites. Bitwidth and signage
parameters are omitted here. The ∗ operation represents both {+,×}. The rules are condition-
ally applied as a function of the bitwidth and signage information attached to each operand.
The necessary and sufficient conditions are too complex (denoted by †) to display in column 4
for most rewrites. To demonstrate the complexity, the condition for associativity of addition is
given in Appendix B.

Class Name Left-hand Side Right-hand Side Condition

Bitvector Arithmetic

Commutativity a ∗ b b ∗ a True
Associativity (a ∗ b) ∗ c a ∗ (b ∗ c) †

Associativity of Sub (a− b)− c a− (b+ c) †
Dist Mult over Add/Sub a× (b± c) (a× b)± (a× c) †
Dist Add/Sub over Mult (a× b)± (a× c) a× (b± c) †

Add Zero a+ 0 slice(a) †
Mul by Zero a× 0 0 †
Mult by One a× 1 slice(a) True
Mult by Two a× 2 a ≪ 1 True
Sub to Neg a− b a+ (−b) True
Sum Same a+ a 2× a †

Mult Sum Same (a× b) + b (a+ 1)× b †

Bitvector Logic

Merge Left Shift (a ≪ b) ≪ c a ≪ (b+ c) †
Merge Right Shift (a ≫ b) ≫ c a ≫ (b+ c) †
Redundant Sel b?a : a slice(a) True
Nested Mux Left a ? (a ? b : c) : d a ? b : d †
Nested Mux Right a ? b : (a ? c : d) a ? b : d †

Sel Left Shift e?(a ≪ b) : (c ≪ d) (e?a : c) ≪ (e?b : d) †
Sel Right Shift e?(a ≫ b) : (c ≫ d) (e?a : c) ≫ (e?b : d) †
Not over Con ∼ {a, b} {(∼ a), (∼ b)} †

Arithmetic
Logic Exchange

Left Shift Add (a+ b) ≪ c (a ≪ c) + (b ≪ c) †
Add Right Shift a+ (b ≫ c) ((a ≪ c) + b) ≫ c †
Left Shift Mult (a× b) ≪ c (a ≪ c)× b †
Sel Add/Mul e?(a ∗ b) : (c ∗ d) (e?a : c) ∗ (e?b : d) †

Sel Add Zero Left e?(a+ b) : c (e?a : c) + (e?b : 0) †
Sel Add Zero Right e?a : (b+ c) (e?a : b) + (e?1 : c) †
Sel Mul One Left e?(a× b) : c (e?a : c)× (e?b : 1) †
Sel Mul One Right e?a : (b× c) (e?a : b)× (e?1 : c) †
Move Sel Zero (b?0 : a)× c a× (b?0 : c) †
Concat to Add {a, b} (a ≪ wb) + b †

Neg Not −a (∼ a) + 1 †

Merging Ops
Merge Additions a1 + (a2 + (a3 + ...+ an)...) SUM(a1, a2, ..., an) †
Merge Mult Array (a× b) + (c× (∼ b)) MUXAR(b, a, c) †

FMA Merge (a× b) + c FMA(a, b, c) †
Constant Expansion

Mult Constant c× x ((2× (c ≫ 1))× x) + (c[0]× x) †
One to Two Mult 1× x (2× x)− x †

3.2. Rewrites 43

ROVER to re-arrange and simplify arithmetic expressions. The second group includes trans-

formations more commonly encountered in hardware design, simplifying logical expressions and

removing redundant logic. The third class of rewrites, Arithmetic Logic Exchange, are inspired

by the work of Verma et al. [24] and facilitate the discovery of additional arithmetic clustering

opportunities. These opportunities can be missed by logic synthesis as arithmetic operations

can be separated by logical operations. The Arithmetic Logic Exchange rewrites allow ROVER

to move logic operations over arithmetic operations, enabling larger arithmetic clusters to form.

Once clustered together, these blocks can be effectively optimized by logic synthesis resulting

in more optimal circuit designs. ROVER extends prior work on this subject [24], generalizing

and expanding the scope.

The Merging Ops rewrites detect certain operator combinations and cluster them into a single

custom operator which, as described in Section 3.1, allows ROVER to identify sub-circuits that

synthesis tools will specifically optimize [23]. Both the “Merge Additions” and “FMA Merge”

rewrites exploit carry-save format to construct a multi-row array which can be reduced using

half- and full-adders [29]. Like the SUM operator, the FMA operator requires a single carry-

propagate adder to generate the result a × b + c. The “Merge Mult Array” identifies disjoint

multiplier arrays that can be merged. Letting b[i] represent bit i of b and u = ⌈log2 r⌉, MUXAR in

the table denotes the right hand side of the rewrite, where the SUM represents array reduction:

MUXAR(b, a, c) =

SUM((b[0]?a : c) ≪ 0,

(b[1]?a : c) ≪ 1, ...,

(b[r − 1]?a : c) ≪ (r − 1)).

These rewrites help ROVER to identify the best design to pass onto logic synthesis as they

encode downstream logic synthesis optimizations directly in the e-graph, greatly helping to

address the toolchain correlation problem.

The remaining class of rewrites, “Constant Expansion”, explores alternative representations

44 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

of constants in hardware with particular attention paid to multiplication of a variable by a

constant. These rules generalize MCM optimizations and are valuable where constant manipu-

lation can occur as a sub-problem in a larger design optimization, where a specialist MCM tool

is not applicable. Section 3.5 will describe such results, but will also demonstrate limitations of

a rewriting approach for complex MCM problems. These rules allow ROVER to re-create and

generalize results from the MCM literature described in Section 2.1. As in previous egg imple-

mentations, constant folding is implemented as an e-class analysis [15].

3.2.2 Synthesizing Rewrite Conditions

As described above, rewrites are encoded as triples (cond, term, term), where the terms may

contain variable width and signage parameters. Not all assignments to these parameters

produce valid rewrites, meaning the rewrite should be conditionally applied. Namely, in general,

for rows in the table with † conditions, there exist mappings m such that JlhsKm ̸∼= JrhsKm.

Figure 3.4 describes an automated condition synthesis flow, that greatly simplifies the addition

of new rewrites to ROVER. The proposed flow automatically constructs a solution to the

following problem. Given a pair of terms, (lhs, rhs), construct a cond, ϕ, such that for all

maps m,

ϕ(m) ⇔ JlhsKm ∼= JrhsKm. (3.9)

The sufficiency of ϕ (⇒) is essential because applying a single invalid rewrite introduces a non-

equivalent expression into the e-graph, meaning that no design in the e-graph can be trusted.

The necessity of ϕ (⇐) ensures that no rewriting opportunities are missed by ROVER. In

practice, constructing a ϕ satisfying (3.9) is challenging since the space of all mappings is

infinite. The data-driven condition synthesis approach used here does not guarantee that the

generated ϕ satisfies (3.9), however any invalid rewrite applications are detected via a backend

verification flow that will be described in Section 3.4.

Developers or design engineers can specify new ROVER rewrite rules as pairs of terms and run

ROVER’s condition synthesis flow to automatically generate a correct cond. This allows design

3.2. Rewrites 45

lhs term

rhs term

Enumerate

Mappings VeriLang
JlhsKm1

= JrhsKm1

. . .

JlhsKmR
= JrhsKmR

Problem

Generation

RTL

EC
Lookup Table
m1 → {T, F}

. . .

mR → {T, F}

Classifier

Training
Decision
Tree

Figure 3.4: Flow diagram for the automated process of synthesizing rewrite conditions. The
output is a decision tree that is translated into a Boolean expression.

engineers to include valuable transformations drawing from their own experience, but avoids

the overhead of considering all the scenarios in which the transformation is valid or invalid.

The idea is to sample the space of all signages and all small bitwidth combinations, and to

build a general rule for validity consistent with the sample taken.

The automated condition synthesis flow deploys program synthesis [124], where a correct con-

dition is learnt from data. Let lhs contain H free bitwidth parameters w1 to wH and G free

signage parameters s1 to sG.

M = {w1 7→ w1, . . . wH 7→ wH, s1 7→ s1, . . . sG 7→ sG

| wi ∈ {1, . . . , 8} ∧ si ∈ {unsign, sign}} .

The flow enumerates the entire parameter space, M , constructing VeriLang expressions JlhsKm
and JrhsKm for allm ∈ M , and determines, for eachm ∈ M , whether these terms are equivalent.

ROVER converts both JlhsKm and JrhsKm to Verilog then deploys commercial RTL EC as an

oracle. This enables the re-use of the RTL generation framework (see Section 3.3.3) and defers

Verilog semantic interpretation to the commercial tool. Each mapping corresponds to a single

lemma, which the EC either proves (true) or disproves (false). These results are stored in a

lookup table T such that

T (m) =







true, if JlhsKm ∼= JrhsKm

false, otherwise.

(3.10)

The lookup table T , represents the data from which ROVER learns a condition. The objective

is to determine a condition, ϕ, that can be extrapolated beyond the domain M . To achieve

46 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

(+ w3 w2 s2 (+ w2 w1 s1 a w1 s1 b) w1 s1 c) →
(+ w3 w1 s1 a w2 s2 (+ w2 w1 s1 b w1 s1 c))

w2 < w3

w1 < w3

T(5) s1

s2

T(4) F

T(3)

w1 < w2

F s1

s2

T(2) F

T(1)

ϕ =
(1) (w2 < w3 ∧ w1 < w2 ∧ s1) ∨
(2) (w2 < w3 ∧ w1 < w2 ∧ !s1 ∧ !s2) ∨
(3) (!(w2 < w3) ∧ w1 < w3 ∧ s1) ∨
(4) (!(w2 < w3) ∧ w1 < w3 ∧ !s1 ∧ !s2) ∨
(5) (!(w2 < w3) ∧ !(w1 < w3))

Figure 3.5: A decision tree classifier, which determines whether the restricted associativity of
addition rewrite (shown above the tree) is valid (T) or invalid (F). The right/left branch is
taken if the condition is true/false. The si nodes evaluate to true when si == unsign. The
decision tree corresponds to the sum of product Boolean expression displayed at the bottom of
the tree, where each product corresponds to a particular T leaf.

3.2. Rewrites 47

this ROVER fits a decision tree classifier [125] to determine a predicate, ϕ, such that

∀m ∈ M, ϕ(m) = T (m). (3.11)

ROVER uses Python’s sklearn library implementation to fit a decision tree classifier. The

classifier learns based on Boolean features (3.12)-(3.17).

i = 1 . . .m, si == unsign (3.12)

i, j, k = 1 . . . n, i ̸= j ̸= k, wi == wj (3.13)

wi < wj (3.14)

wi ± 1 < wj (3.15)

wi + wj < wk (3.16)

wi + 2wj < wk (3.17)

These features are relevant for the operators supported in VeriLang. For example, (3.14)

indicates whether an addition of wi-bit integers stored in a wj-bit signal will retain a carry-out.

Similarly, (3.16) relates to a multiplication of a wi-bit integer and a wj-bit integer stored in a

wk-bit signal. Lastly, (3.17) relates to a wi-bit integer left-shifted by a wj-bit integer stored in

a wk-bit signal.

Starting from depth one, ROVER incrementally increases the maximum decision tree depth

during the fitting procedure until the generated classifier satisfies (3.11) corresponding to zero

classification error on the training set. Figure 3.5 takes a restricted associativity of addition

rewrite as an example, where the variables a, b and c have identical bitwidth and signage

parameters. This rewrite contains H = 3 free bitwidth parameters and G = 2 free signage

parameters. The procedure shown in Figure 3.4 generates |M | = 83 × 22 = 2048 equivalence

checks. The equivalence check results are used to train a decision tree classifier, which achieves

perfect classification accuracy at depth four. The resulting decision tree is shown in Figure 3.5,

where each T (F) leaf corresponds to valid (invalid) rewrite instances.

The decision tree is converted to a Boolean expression in sum of product form, yielding a

48 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

ϕ that satisfies (3.11), where only the leaves that are classified as true are retained. The

sum of product expression corresponding to the example decision tree is shown in Figure 3.5.

The minimum depth classifier satisfying (3.11) corresponds to a condition with the minimal

number of products. Even for a relatively simple rewrite such as the unrestricted associativity

of addition, there are H = 5 free bitwidth parameters and G = 4 free signage parameters.

This generates |M | = 85 × 24 = 219, leading to a depth 9 decision tree classifier. For large

enumeration spaces, a sampling approach may be necessary. The condition derived from this

decision tree is given in Appendix B.

Via the e-matching process egg searches the e-graph for expressions matching the left-hand

side of a given rewrite, returning a mapping m. ROVER evaluates the synthesized cond, ϕ(m),

to determine whether the rewrite can be applied or not. ϕ is guaranteed to be necessary and

sufficient if the mapping returned by the e-matching process m ∈ M . For example, applying the

rewrite described in Figure 3.5 to an e-graph corresponding to the Verilog shown in Figure 3.3,

e-matching detects two potential rewriting opportunities and returns two maps m1 and m2

corresponding to the expressions for left1 and left2, respectively. The difference is highlighted

in red.

m1 =







w3 7→ 9

w2 7→ 8

s2 7→ unsign

w1 7→ 8

s1 7→ unsign

m2 =







w3 7→ 9

w2 7→ 9

s2 7→ unsign

w1 7→ 8

s1 7→ unsign

Evaluating the cond, ϕ, shown in Figure 3.5

ϕ(m1) = false ϕ(m2) = true. (3.18)

This agrees with the validity statements made in Figure 3.3. Note that m1,m2 ̸∈ M , providing

an example where the condition extrapolation is valid.

3.3. Extraction and Back-End 49

Since ROVER supports Verilog with signals exceeding 8-bit integers (the limit of the training

data), ROVER extrapolates by assuming that the predicate, ϕ, learnt on training data is valid

for the entire domain of feasible bitwidths, which is an infinite space. Even if this assumption

is incorrect, false positives, which were not observed in practice, are detected by the back-end

verification, described in Section 3.4, preventing ROVER from delivering functionally incorrect

RTL.

3.3 Extraction and Back-End

ROVER applies rewrites to the e-graph until saturation (defined in Section 2.4) or a user defined

iteration limit is reached. The final e-graph contains a set of valid implementations. The

extraction process selects a set of e-classes to implement and within these e-classes chooses the

best node to implement that particular e-class. In this chapter, ROVER selects the minimum

area design according to a theoretical area metric.

3.3.1 Cost Model

The theoretical area metric estimates, per operator, the number of two-input gates required to

build that operator, as a function of the input and output parameters. For most logical opera-

tors the cost metric is fairly simple, but for the arithmetic operators ROVER fixes a particular

architecture from amongst the various possibilities. These architecture choices are described in

Table 3.1 and are representative of operator architectures implemented by commercial synthesis

tools [21]. When at least one operand is constant a different, constant specific, cost is used, as

logic synthesis propagates constants throughout a circuit to reduce the number of gates, e.g.

constant multiplication.

Having assigned a cost to each operator, the objective is to minimize the sum of the operator

costs. Note that, by computing theoretical costs for the merging operators, SUM, MUXAR and FMA

downstream synthesis optimizations are encoded directly in the cost model. The theoretical cost

50 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

metric allows ROVER to efficiently evaluate alternative designs in the e-graph. Commercial

ASIC HLS tools use call-outs to logic synthesis engines to evaluate different circuit designs [6].

Such an approach is more computationally intensive thus limiting design space exploration.

Section 3.6 evaluates the effectiveness of the theoretical cost metric.

3.3.2 Common Sub-Expression Aware Extraction

An accurate circuit area model must correctly account for common sub-expressions. For ex-

ample, a circuit to generate (a + b) × (a + b) should be costed as let c = a + b in c × c.

Such a requirement makes extraction a global problem, since an optimal e-node implementa-

tion for a given e-class is no longer local, instead it may depend on implementation choices

made in other e-classes. The default greedy extraction method in egg fails to account for com-

mon sub-expression re-use, therefore yields sub-optimal solutions for minimal circuit area. An

optimal circuit area design is extracted by casting extraction as an ILP problem, similar to

the approach in prior work that optimized linear algebra expressions [111]. The ILP encoding

correctly counts the cost of an operator once, irrelevant of how many times the resulting signal

is utilized.

Let N denote the set of all nodes, C denote the set of all e-classes and E ⊆ N ×C be the set of

e-graph edges. Additionally, let Nc be the set of nodes in a particular e-class c. For each node

n ∈ N , associate some cost, cost(n), based on the theoretical cost metric and a binary variable

xn ∈ {0, 1}, indicating whether n is implemented in the final RTL. The objective function of

the ILP is described in (3.19). The program constraints ensure that a valid circuit description

is extracted. The first constraint (3.20) ensures that at least one node from all child e-classes

of a selected node is implemented. The final constraint ensures that for all output expressions

3.3. Extraction and Back-End 51

found in the set of e-classes S, the generated circuit produces that output.

minimize:
∑

n∈N

cost(n)xn subject to: (3.19)

∀(n, c) ∈ E.
∑

n′∈Nc

xn′ ≥ xn (3.20)

∀c ∈ S.
∑

n∈Nc

xn = 1. (3.21)

Since e-graphs may contain cycles additional topological sorting variables associated with each

class tc are included. Let N denote the number of e-classes and C(n) be the e-class containing

node n. The constraint (3.22) ensures that the output expression is acyclic.

∀(n, k) ∈ E tC(n) −Nxn − tk ≥ 1−N (3.22)

Selecting a node n ∈ Nc with child k, i.e. xn = 1, the constraint simplifies to tc ≥ tk+1 to get a

topologically sorted result, whereas in the case xn = 0, the constraint is vacuously satisfied. To

solve this ILP problem ROVER deploys the CBC solver [126]. The ILP solution corresponds

to a single VeriLang expression, that is a minimal circuit area implementation according to the

theoretical area metric.

3.3.3 Code Generation

Having obtained a VeriLang expression, ROVER translates this expression into System Verilog

to be processed by downstream synthesis tools. The translation is implemented as an e-class

analysis, as described in Section 2.4. Initializing a code generation e-graph with a single Veri-

Lang expression, the e-class analysis is constructed from the leaves upwards producing a valid

System Verilog implementation. Each e-class is assigned a unique signal name, its defined

bitwidth and the System Verilog string that implements the particular operation in the e-class.

Each e-class in the e-graph corresponds to a single signal assignment in the generated System

Verilog. Traversing the e-graph, ROVER defines a signal at each e-class and assigns the stored

52 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

expression to that signal name.

An advantage of the e-graph approach is that ROVER can maintain a mapping between user

defined signal names and e-classes throughout the exploration. If such an e-class is present in

the extracted implementation, ROVER overwrites the signal name of the appropriate e-class

in the code generation e-graph. As a result, the generated System Verilog retains a subset of

the user defined signal names. For example, if a user defined a signal two x, assigning it to the

expression x+ x, and that was rewritten as x ≪ 1, then the two x signal would still appear in

the generated output, with a different assignment.

3.4 Verification

To increase trust and ensure that the input and generated circuit designs are equivalent,

ROVER generates verification scripts for a commercial EC. In many cases, the EC is able

to prove the functional equivalence of the input and ROVER-generated RTL, without any

additional guidance. However, there are instances where the equivalence engine returns an

inconclusive result [86]. Debugging inconclusive proofs can be time consuming for verification

engineers. To provide a robust verification flow, ROVER uses the egg proof production fea-

ture [107] described in Section 2.4, to decompose the verification problem into a sequence of

simple sub-problems.

ROVER uses proof production to extract a sequence of intermediate VeriLang expressions,

differing by a single local rewrite at each step. The sequence traces a path between the input

and optimized expressions, as shown in Figure 3.1. Using the ROVER back-end, each interme-

diate VeriLang expression is converted to System Verilog. Each pair in the sequence is proven

equivalent using the EC, constructing the chain of reasoning that the original and optimized im-

plementations are equivalent. To further aide proof convergence, ROVER identifies the specific

signal modified in each pair via an additional lemma. ROVER’s proof sequences can contain

hundreds of intermediate steps. Whilst each of these steps is trivial to prove for the EC tool,

verifying the combination of many transformations can yield inconclusive proofs. Section 3.5.4

3.5. Results 53

demonstrates the value of proof decomposition. ROVER generates both the RTL and proof

scripts, providing a proof certificate to the user which can be re-run to verify the RTL.

3.5 Results

ROVER has been used to optimize a number of industrially and academically sourced RTL

benchmarks, automatically producing optimized RTL implementations. The original and opti-

mized designs are synthesized using a commercial synthesis tool for a TSMC 5nm cell library.

The effectiveness of ROVER’s datapath clustering optimizations are evaluated by studying the

synthesis reports. Using the approach described in Section 3.4 the functional equivalence of

the original and optimized architectures is verified. Each pair of designs is compared at two

points along the area-delay trade-off curve using logic synthesis. The results for all bench-

marks are summarized in Table 3.3. Figure 3.6 plots the complete area-delay profile comparing

the original and ROVER optimized Media Kernel implementations across the delay spectrum.

Table 3.3 compares the designs at the minimal delay target at which both designs can meet

timing (rounded to the nearest 10 picoseconds), corresponding to the vertical dashed line in

Figure 3.6. The second comparison point, is at the minimum area that both designs can fit

within (yielding different performance levels), corresponding to the horizontal dashed line in

Figure 3.6. The evaluation will primarily focus on the area and delay impact since the cell

count and power measurements are proportional to the area in this work.

The results are separated into two contributions. Firstly, ROVER is evaluated on a set of

general RTL benchmarks. Then we will see how ROVER can optimize different instances of

parameterizable RTL, generating a suite of tailored implementations.

3.5.1 Benchmark Selection

Each benchmark is comprised of a single module, implementing a datapath circuit using the

ROVER supported operators described in Table 3.1. Typically, only designs containing multiple

54 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

0.3 0.35 0.4 0.45 0.5 0.55 0.6
60

80

100

120

140

160

180

200

Delay (ns)

A
re
a
(µ
m

2
)

Original
ROVER

Figure 3.6: Area-delay profiles for the original and ROVER optimized Media Kernel designs.
The dashed grey lines indicate the minimum area and delay comparison points used in Table 3.3.

sequential operations are amenable to the dataflow graph manipulations performed by ROVER,

motivating the benchmark selection. The first two benchmarks are closed-source Intel designs

taken from broader units that my Intel team were asked to optimize. These designs were easy

for ROVER to consume, lacking additional System Verilog constructs such as generate loops,

and exhibited datapath rewriting opportunities. The remaining benchmarks are all publicly

available. The FIR Filter Kernel and ADPCM Decoder are taken directly from [24], which is

the most relevant prior work. The Shifted FMA and Shift Mult are toy examples constructed

for this evaluation, inspired by datapath optimizations performed in industry, which concisely

demonstrate where ROVER exceeds [24]. The functional description of Shifted FMA is given

below in (3.23) and the Verilog implementation of Shift Mult is given in Figure 3.7. The last

collection of benchmarks are all taken from existing work on the MCM problem [127] and are

included to demonstrate ROVER’s ability to construct general solutions to specific problems.

The area optimization approach presented in this chapter will be used as a baseline in Chapters 5

and 6 to evaluate the additional benchmarks listed in Appendix A.

3
.5
.

R
esu

lts
55

Table 3.3: Logic synthesis results comparing the original and ROVER optimized designs under two different synthesis constraints. Firstly,
at the minimum delay which both designs could meet and secondly, constrained to the minimum area that both designs could meet.
Delay, power and area are measured in ns, µW and µm2, respectively. We bold the best result for each metric.

Source Benchmarks Min Delay
Original ROVER

Min Area
Original ROVER

Cells Power Area Cells Power Area Delay Delay

Intel
Media Kernel 0.35 1759 959.4 167.3 918 427.9 84.2 -50% 117.6 0.60 0.30 -50%
Weight Calculation 0.25 1353 927.1 75.3 1030 719.4 57.8 -23% 39.8 0.84 0.40 -52%

Open-Source

FIR Filter Kernel 0.67 8067 2839.0 552.6 7846 1837.9 428.6 -22% 209.0 4.40 4.09 -07%
ADPCM Decoder 0.12 620 197.4 41.8 556 190.6 38.0 -9% 20.8 0.84 0.84 0%
Shifted FMA 0.22 996 502.0 83.7 855 445.1 68.6 -18% 54.6 0.85 0.31 -64%
Shift Mult 0.30 2864 1356.4 240.1 1317 522.0 88.8 -63% 150.7 1.88 0.26 -86%
MCM(3,7,21) 0.12 894 161.0 36.6 1015 249.2 51.4 +40% 23.3 0.81 0.58 -28%
MCM(5,93) 0.12 687 204.8 38.2 778 292.0 53.6 +40% 22.4 0.73 0.58 -21%
MCM(7,19,31) 0.09 1079 230.0 53.3 1082 236.4 54.1 +02% 21.8 0.72 0.72 0%

Table 3.4: ROVER performance and e-graph size before/after rewriting.

Benchmark Init Nodes Final Nodes Extract Runtime (sec)

Media Kernel 45 1312 ILP 10.67
Weight Calc. 107 3036 ILP 165.00
FIR Filter 30 8487 ILP 155.90
ADPCM 17 7290 Greedy 16.64
Shifted FMA 13 26 ILP 0.09
Shift Mult 13 72 ILP 0.13
MCM(3,7,21) 13 17493 ILP 135.00
MCM(5,93) 12 2986 ILP 113.86
MCM(7,19,31) 13 7601 ILP 50.59

56 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

3.5.2 Exploiting Datapath Optimizations

The first set of benchmarks in Table 3.3 are Intel RTL designs. The first benchmark is a kernel

from the Intel media module. ROVER is able to automatically optimize the design and achieve

comparable results to manual optimization by an RTL expert, discovering the opportunity to

merge two multiplication arrays into a single array using the “Merge Mult Array” rewrite. The

reports generated by the synthesis tool highlight the source of the area reduction when compared

against the original baseline. The original design produces four datapath clusters, corresponding

to four carry-propagate adders in the synthesized netlist. By contrast, the ROVER optimized

design produces two datapath clusters, halving the number of carry-propagate adders in the

generated netlist. These improvements translate to a 14.7% reduction in minimum achievable

delay within a circuit area 35.4% smaller. In the logic synthesis engine, further arithmetic

clustering is prevented because the tool detects datapath leakage (as described in Section 2.1)

due to supposed truncation in the following System Verilog.

a[8:0]= 9’d256 - {1’b0,b[7:0]};

This analysis, however, is flawed. There is in fact no overflow as the code contains constants, a

fact the analysis performed by logic synthesis fails to capture because it has limited understand-

ing of constants. ROVER meanwhile, rewrites this expression to avoid this supposed datapath

leakage. The Weight Calculation benchmark is a two-stage pipelined design computing pixel

offsets in the graphics pipeline. ROVER optimizes each stage independently. By rewriting

the MUX tree structure within each stage, using the “Sel Mul” rewrites, ROVER reduces the

number of multipliers instantiated from five to three. The work of Verma et al. [24] has no

ability to combine multipliers by manipulating the MUX tree structure, so can not reach these

designs generated by ROVER.

The next two benchmarks are taken from [24], where ROVER generalizes and exceeds the capa-

bilities of this prior work. The first example is a familiar Finite Impulse Response (FIR) filter

with 8-taps (a 3-tap version is shown in Figure 3.8a). Via the “Arithmetic Logic Exchange”

rewrites, ROVER explores all the alternative arithmetic clustering opportunities extracting

3.5. Results 57

module spec (A,B,M,N,O) ;
input [1 5 : 0] A, B;
input [3 : 0] M, N;
output [6 2 : 0] O;
wire [3 0 : 0] D, E;

assign D = A << M;
assign E = B << N;
assign O = D ∗ E;

endmodule

Figure 3.7: Shift Mult benchmark implemented in Verilog. The design first shifts the two inputs
then performs a multiplication.

an optimal clustering according to the theoretical cost metric. In contrast, the logic synthe-

sis engine appears to greedily cluster all operators. This maintains carry-save representation

throughout, but, potentially, results in shifting carry-save representations, incurring additional

circuit area overhead. The ADPCM decoder is a design which approximates a 16×4 multiplier.

For this benchmark, both ROVER and the logic synthesis engine achieve a complete clustering.

ROVER manipulates the MUX tree structure, whilst the logic synthesis tool appears to add

additional operators to facilitate the clustering.

The next two benchmarks demonstrate optimizations beyond the capabilities of [24]. Shifted

FMA implements a simple circuit.

(a× b) ≪ S + c (3.23)

ROVER exploits multiplication-manipulating rewrites since logic synthesis tools will effectively

cluster multiplications followed by additions to reduce the number of carry-propagate adders.

As in the FIR filter example, logic synthesis greedily clusters, such that it must perform a

shift of a value represented in carry-save format. By moving the shift ROVER enables a

simpler arithmetic clustering. Shift Mult is a kernel extracted from a floating point multiplier

that normalizes the product of two denormals. By re-ordering the shift and multiplication

operators a smaller multiplier can be instantiated, reducing the circuit area. In contrast,

the logic synthesis tool does not manipulate the higher-level dataflow graph to explore the

interaction of arithmetic and logical operators, therefore does not discovers this opportunity.

58 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

These ROVER optimizations are not reachable by [24], since their tool did not explore the

interaction between multiplication and logic.

The “Constant Expansion” rewrites are valuable for the MCM benchmarks, where

MCM(a1, a2, ..., an) = {a1 × x, a2 × x, ..., an × x}. (3.24)

MCM(3,7,21) is an example taken from [27]. ROVER is able to match the operator count from

[27], extracting a design that uses three addition/subtraction operators by sharing intermediate

results. Such an architecture serializes the construction of 3×x and 21×x, which at low delay

targets introduces an area penalty, because the original architecture can compute each result

in parallel with no dependency. However, from the ROVER-generated RTL a smaller circuit

can be synthesized, as shown in Table 3.3. For the MCM(5,93) benchmark ROVER is similarly

able to use just 3 adders, matching the minimal adder count, and showing similar synthesis

results to MCM(3,7,21). For the MCM(7,19,31) benchmark1 ROVER recovers the standard

CSD solution using 4 adders and matching the synthesis tool (hence the identical synthesis

results). The minimal solution uses 3 adders, but is unreachable using ROVER’s existing

rewrites as it relies upon representing 19 = (31 + 7) ≫ 1.

In this work, the logic synthesis tool has all datapath optimizations enabled to provide a

baseline, leveraging state-of-the-art datapath optimization techniques. To quantify the signifi-

cance of the datapath optimizations built in to the logic synthesis tool and those performed by

ROVER, these optimizations were disabled and the designs were synthesized again. On aver-

age, with datapath optimization disabled the logic synthesis tool produced circuits 17.6% larger

than with datapath optimization enabled, and 55.8% larger than the ROVER-generated cir-

cuits. Furthermore, in 5 out of the 9 benchmarks, disabling datapath optimization led to timing

violations in the synthesized netlists. These results are included to demonstrate how ROVER

advances the state of the art, which already incorporates powerful optimizations.

1Thank you to an anonymous reviewer of our journal paper for providing this benchmark.

3.5. Results 59

3.5.3 Bitwidth Dependent Architectures

This section considers parameterizable RTL designs. As the complexity of integrated circuits

grows, reusable and parameterizable hardware has become increasingly popular amongst en-

gineers and architects as it facilitates faster development. Each instance of this RTL will be

synthesized using the same architecture. By contrast, ROVER automatically optimizes each

instance generating a bespoke component that is optimized for a given instance.

To investigate whether ROVER can usefully adapt the architecture depending on parameter

values, a 3-tap FIR filter with parameterizable input bitwidths was considered. Increasing the

input bitwidth parameter from 4 to 64 allowed ROVER to explore the design space for each

parameterization. As shown in Figure 3.8, ROVER extracted one of three distinct architectures.

In the FIR kernel testcase the benefits of clustering consecutive additions into a SUM node

compete with the additional shift operations required to facilitate the merging. Note that

Architecture 0 uses four carry-propagate adders and three logical shifts, Architecture 1 uses

two carry-propagate adders and three logical shifts, whilst Architecture 2 uses only a single

carry-propagate adder at the expense of one additional logical shift. ROVER automatically

detects the point at which these trade-offs becomes favorable as bitwidth is increased.

For each bitwidth, Architecture 0 and the distinct ROVER-generated RTL (which implements

either Architecture 0, 1 or 2) are synthesized at the minimum delay target that both can meet.

Figure 3.9 plots synthesis results at each bitwidth comparing against the baseline, Architecture

0 (Figure 3.8a). The architectural selections made by ROVER reduce the circuit area by up

to 30% and by 15% on average. For 4-bit and 8-bit designs, ROVER increases the circuit

area despite deploying the same architecture as the baseline. This is due to synthesis noise,

an effect quantified precisely in Section 3.6. Using ROVER to automatically generate an opti-

mized design for each parameterization allows engineers to avoid manual customization without

sacrificing IP quality.

60 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

(a) Architecture 0 {4,8} (b) Architecture 1 {12,...,24}

(c) Architecture 2 {28,...,64}

Figure 3.8: Simplified FIR filter dataflow graphs representing optimal architectures for different
choices of the input bitwidth parameter p and shift bitwidth parameter q. Edge labels indicate
the operator index and bitwidth in square brackets. The sets in curly braces are bitwidths for
which that architecture is optimal. In these graphs 2S and 3S are constant multiples of S.

3.5. Results 61

8 16 24 32 40 48 56 64

−30

−20

−10

0

10

Bitwidth

A
re
a
C
h
an

ge
(%

)

Arch 0
Arch 1
Arch 2

Figure 3.9: Synthesis results for the 3-tap FIR kernel at a range of different bitwidths. Both the
ROVER-generated RTL and original RTL (Architecture 0) are synthesized with a minimum
delay objective. The relative change in area and delay against the baseline is plotted.

3.5.4 Performance

Table 3.4 presents benchmark properties and optimization statistics. ROVER was run on

SLES 12 on modern Intel Xeon CPUs. Since the evaluation does not compare runtimes against

alternative approaches, a single runtime result is reported that does not account for small run-

to-run variations. The ILP extraction method uses a timeout limit of 120 seconds and in all

the longer running benchmarks, ILP solving dominated the runtime. Note that the number

of ILP constraints is proportional to the number of nodes in the final e-graph. Whilst ILP

scalability is a concern, the modular nature of RTL design ensures that large scale problems

can typically be naturally partitioned. The faster greedy egg extraction method [15] was used

for the ADPCM decoder since there was no scope to exploit common sub-expressions in this

benchmark. Extraction method selection is left as a user specified option for ROVER. Note

that the final e-graph size is not well correlated with the number of operators in the initial

e-graph. The size of the final e-graph depends more upon the structure of the initial design

and the type of operators it contains.

62 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

Highlighting the importance of the verification flow, for the Media Kernel and Shift Mult

benchmarks, the commercial EC returned inconclusive results, even when running for several

hours, when only given the original and ROVER-generated RTLs. Using the ROVER-generated

problem decomposition, the correctness of the generated RTL could be proven in seconds. For

all other benchmarks presented here, the EC could prove the equivalence of the original and

ROVER-generated RTLs without the problem decomposition described in Section 3.4.

3.6 Cost Metric Evaluation

The primary objective of the theoretical cost metric is to steer the extraction process in order

to generate an optimized architecture. Before determining the accuracy of a cost estimate,

it is necessary to consider inherent variability of the logic synthesis process. Results such as

those observed in Section 3.5.3, showed that in logic synthesis small non-functional tweaks, e.g.

changing a variable name in RTL code, can have impact on the synthesis results. This forms a

‘noise floor’ against which any theoretical cost model can be validated. In fact, VeriLang is un-

able to express such changes. The evaluation of the logic synthesis noise floor used an approach

known as performance fuzzing [128, 129], that differs from the more traditional application of

fuzzing to automated bug detection [128]. By automatically generating random mutations to

a program, the variation in the results can be measured. Fuzzing the RTL allows two types

of semantics-preserving mutations: variable renaming and swapping the order of always/assign

blocks [2] in the code, modifications which one would not expect to have a meaningful impact

on synthesis results. Variability of the results for the Media Kernel and 3-tap FIR Filter,

synthesizing 30 fuzzed designs in each case at relevant delay targets, is shown in Figure 3.10.

Figure 3.11 highlights how noise can affect the choices made in Section 3.5.3. For 12-bit inputs

the synthesis results for fuzzed Architectures 0 and 1 overlap, with Architecture 1 generating

lower area on average whilst Architecture 0 obtains the minimum area. This noise is not cap-

tured by ROVER, as these fuzzed designs are identical when represented in VeriLang. Applying

this to other bitwidth inputs there are cases where there is clearly an optimal choice.

3.6. Cost Metric Evaluation 63

Figure 3.10: A violin plot depicting the logic synthesis area results for 30 fuzzed designs of the
Media Kernel and the 3-tap FIR Filter at a 0.5ns delay target. For each violin, the area results
are normalized by the mean.

Figure 3.11: Histogram plot of logic synthesis area results for 30 fuzzed designs for each of the
three FIR Filter architectures (Fig 3.8).

64 Chapter 3. Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level

−70 −60 −50 −40 −30 −20 −10 0

−80

−60

−40

−20

0

FIR

Media

ADPCM

FMA

ShiftMult

Weight

Estimated Change (%)

A
ct
u
al

C
h
an

ge
(%

)

Figure 3.12: ROVER’s predicted percentage change vs. the actual percentage change based on
logic synthesis at the minimum delay target. Points above/below the diagonal indicate that
ROVER over/under-predicts the area reduction. The MCM results are omitted. Red lines
represent the synthesis noise window.

These results show up to a 15% difference in logic synthesis area, which ROVER’s cost model

cannot be expected to capture. Given its randomness, the variability is equally likely to benefit

ROVER as it is to be detrimental for the results shown in Table 3.3. However, the overall

benefit demonstrated by ROVER is statistically significant and explainable.

The accuracy of the cost model is evaluated by plotting the ROVER estimated circuit area

reduction against the actual change seen in the logic synthesis results at the minimum delay

target in Figure 3.12. The graph shows that ROVER both under- and over-estimates the ben-

efit of its optimizations but does provide a reasonable indicator. The ADPCM and Weight

benchmarks exhibit significant over-estimates. In the ADPCM example, ROVER manipulates

the MUX tree structure of the design to enable arithmetic clustering, which the synthesis tool

exploits successfully. Analyzing the datapath extraction report generated during synthesis of

the original ADPCM design, it is clear that the synthesis tool is already capable of manipulating

this design to cluster the arithmetic operations limiting the observable benefit of “optimiza-

tions” performed by ROVER. For the Weight Calculation benchmark, ROVER reduces the

3.7. Summary 65

number of multipliers instantiated by two. In the original design, the synthesis tool includes

these multipliers in a datapath cluster, therefore the circuit area benefit is less than the full

multiplier area cost. The omitted MCM benchmarks highlight the limitations of an area only

model, as the benefit depends upon the delay target.

3.7 Summary

By decomposing RTL optimization into a sequence of local-equivalence preserving transfor-

mations, engineers and automated tools can realize substantial circuit area reductions. This

chapter lays the foundations of an RTL rewriting framework, leveraging equality saturation,

and develops ROVER, an RTL optimization tool. Through a set of bitwidth dependent rewrites

and custom operators, ROVER is able capture downstream synthesis optimizations. The equal-

ity saturation approach avoids any need to specify an order in which to apply transformations

whilst maintaining bit-accurate functionality. ROVER’s ability to generate an accompanying

proof certificate ensures that engineers can deploy the ROVER-generated designs with confi-

dence.

Automated rewriting techniques help engineers, allowing them to defer bug prone circuit area

optimization to a tool that can generate verified implementations. The e-graph representation

of RTL, rewrite synthesis framework and verification methodology form the foundations on

which Chapters 5, 6 and 7 build.

Chapter 4

Combining Equality Saturation with

Abstract Interpretation

The previous chapter described how rewriting could be used to optimize a circuit design. How-

ever, rewriting alone is not capable of expressing every optimization that a skilled engineer may

implement. Consider the following Verilog example.

input wire [3 : 0] a , b , c , d ;

wire [4 : 0] add ;

wire [7 : 0] mul ;

output wire [8 : 0] r e s ;

assign add = a + b ;

assign mul = c ∗ d ;

assign r e s = add + mul ;

This implementation conservatively assigns the result of the final addition to a 9-bit result.

This bitwidth determination follows the natural rules; the result of a multiplier occupies twice

the bitwidth of its inputs and the result of an addition may produce a carry-out. However,

by manually analyzing the arithmetic we can see that the maximum value of the result is

15 × 15 + 15 + 15 = 255. This can be stored using only 8-bits, highlighting an optimization

66

67

opportunity. To automatically detect such optimization opportunities it is necessary to perform

some computation, e.g. calculating the maximum value, to discover additional properties of the

design. These properties cannot be determined from the syntax alone, suggesting that datapath

optimization is not purely a rewriting problem. As described in Section 2.3, program analysis

is the process of analyzing the behavior of a program (or a circuit) to learn useful properties.

Using program analysis techniques it will be possible to automate the optimization described

here and many more.

Program analysis is an essential component of many automated optimization and verification

tools. In most automated tools, transformations and analyses are considered separately, yet

recent work on phrasing compilation in terms of abstract interpretation (AI), a core theory

underpinning much of program analysis, highlighted the strong interaction between them [96].

As ROVER began to incorporate program analysis, a similar advantage was observed when

combining equality saturation and program analysis. The benefit comes from analyzing multiple

equivalent representations, which help to mitigate the shortcomings of computationally efficient

program analyses. To both simplify the exposition and demonstrate the broader applicability

of the proposed formal framework, the remainder of this chapter will study real arithmetic

expressions, rather than bitvector arithmetic. Despite the alternative setting, the theoretical

results presented in this chapter will underpin the bitvector analyses that enable the deeper

transformations performed throughout Chapters 5, 6 and 7.

Recall the example of two equivalent real arithmetic expressions provided in Section 2.3. Under

the constraints a ∈ [0, 1] and b ∈ [−2, 1], an interval analysis of the two equivalent expressions,

a×b−b and (a−1)×b, yields [−3, 3] and [−1, 2], respectively. An equality saturation optimizer

may rewrite a × b − b → (a − 1) × b, such that they reside in the same e-class, as shown in

Figure 4.1a. Intuitively, if we now lift the interval analysis from expressions to e-classes of

expressions, we know two facts about the expressions in that e-class. First, any expression in

the e-class produces outputs in the range [−3, 3], but also by equivalence, any expression in the

e-class produces outputs in the range [−2, 1]. This chapter will show that these facts can be

combined via their interval intersection since it is also true that any expression in the e-class

produces outputs in the range [−3, 3] ∩ [−2, 1] = [−2, 1], providing a more precise abstraction

68 Chapter 4. Combining Equality Saturation with Abstract Interpretation

(a) An e-graph containing two equivalent ex-
pressions a× b− b and (a− 1)× b.

(b) An e-graph containing two equivalent ex-
pressions x

x+y and 1
1+(y/x) .

Figure 4.1: Each expression contains two variables subject to input range constraints, a ∈ [0, 1],
b ∈ [−2, 1] and x, y ∈ [1, 4]. The input intervals are propagated through the e-graph via an
e-class analysis (described in Section 2.4.2). In the root e-classes two interval abstractions are
combined taking an intersection.

than analysis of the original expression yielded. An e-graph demonstrating this analysis is

shown in Figure 4.1a.

The examples above demonstrated how program analysis enables circuit optimizations and

how equality saturation can produce a more precise abstraction. Taking this one step further,

the rewrites used in equality saturation can be conditionally applied based on the results of

a program analysis. By interleaving conditional e-graph rewriting and program analysis the

exploration power of the e-graph can be greatly enhanced. Figure 4.2 visualizes this positive

feedback loop. Essentially, as new representations are added to the e-graph via rewriting, the

analysis is refined, potentially facilitating the application of further conditional rewrites.

This chapter formalizes the theoretical connection between equality saturation and AI, a core

theory underpinning much of program analysis. These concepts are required to produce an

e-class analysis, which was introduced in Section 2.4.2. The e-class analysis feature allows

egg users to attach analysis data to each e-class. This data can be accessed during e-graph

69

Conditional
Rewrites Applied

E-Graph
Grows

Abstraction
Refinement

Figure 4.2: The positive feedback loop between e-graph exploration and abstraction refinement.

exploration to validate the applicability of conditional rewrites. Partitioning expressions into

e-classes gives rise to a natural lattice-theoretic interpretation for AI, resulting in the generation

of more precise abstractions. This chapter will use a simpler real-arithmetic setting for moti-

vational examples and evaluation. As another motivational example, Figure 4.1b demonstrates

how interval analyses of equivalent expressions are combined to produce tighter enclosing in-

tervals. In this example, the expressions are actually only equivalent if x is always non-zero, a

property that is true due to the interval constraints on x.

Section 4.1 develops the general theoretical underpinnings of AI on e-graphs, exploiting rewrites

to produce more precise abstractions using a lattice-theoretic formalism. Section 4.2 demon-

strates the benefits of combining equality saturation and AI, describing a general purpose

real-arithmetic analysis tool that approximates the range of values an arbitrary arithmetic

expression can take. The analysis capabilities of the tool are evaluated using the FPBench

suite [130] in Section 4.3.

The work described in this chapter was published at SOAP in 2023 [131]. This chapter contains

the following novel contributions:

• formalization of AI with e-graphs in lattice theory,

• relating fixpoints to e-graph cycles to automatically discover iterative abstract refinement

methods,

• an interval arithmetic (IA) implementation with associated expression bounding results.

For simplicity of exposition, this chapter focuses on non-relational domains. However, it is im-

portant to note that the combination of non-relational domains with the relational information

70 Chapter 4. Combining Equality Saturation with Abstract Interpretation

provided by rewrite rules provides a stronger analysis than classical non-relational domains.

Chapter 5 introduces context into the e-graph and describe a mechanism to realize the abstrac-

tion refinements offered by this relational information.

4.1 Theory

4.1.1 Abstraction

From a theoretical viewpoint, AI [93] is concerned with relationships between lattices, defined

via Galois connections.

Definition 4.1 (Lattice). A lattice is a partially ordered set (poset) ⟨L,≤⟩, such that ∀a, b ∈ L

the least upper bound (join) a ⊔ b and the greatest lower bound (meet) a ⊓ b both exist. Meet-

and join-semilattices only require the existence of the meet and join respectively.

Definition 4.2 (Galois connection). Given a poset ⟨K,⊑⟩, corresponding to the concrete do-

main, and a poset ⟨A,≼⟩, corresponding to the abstract domain, then a function pair α ∈ K →

A, γ ∈ A → K, defines a Galois connection iff

∀P ∈ K. ∀P ∈ A. α(P) ≼ P ⇔ P ⊑ γ(P),

written ⟨K,⊑⟩
α

⇄
γ
⟨A,≼⟩.

The pair (α, γ) define the abstraction and concretization functions respectively, allowing us to

over-approximate (i.e. abstract) concrete properties in K with abstract properties in A.

Definition 4.3 (Sound abstraction [93]). P ∈ A is a sound abstraction of a concrete property

P ∈ K iff P ⊑ γ(P).

Consider expressions evaluated over a domain D. By imposing a canonical ordering on the

variable set, a defined subset I ⊆ Dn, encodes any preconditions on the set of (input) variable

4.1. Theory 71

values. Now consider a (concrete) semantics of expressions J·K· ∈ Expr → I → D, where Expr

denotes the set of expressions, so JeKρ denotes the interpretation of expression e under execution

environment (assignment of variables to values) ρ ∈ I. Let JeK = {JeKρ | ρ ∈ I}. To clarify the

notation, consider the following example. Let D = Z and I = N
2, restricting the two free

variables a and b to be positive integers. If ρ = {a 7→ 2, b 7→ 3}, then Ja − bKρ = 2 − 3 = −1,

and Ja − bK = Z. The e-graph data structure encodes equivalence under concrete semantics,

which can now be defined precisely using this notation.

Definition 4.4 (Congruence). Two expressions ea and eb are congruent, ea ∼= eb, iff JeaKρ =

JebKρ for all ρ ∈ I.

Lemma 4.1. If ea ∼= eb and P is a sound abstraction of JeaK, then P is a sound abstraction of

JebK.

Proof. by definition of congruence.

This lemma implies that a sound abstraction of one expression in an e-class is a sound abstrac-

tion of all expressions in the e-class. Precision refinement relies on the following, which is a

specialization of the more general result [132].

Lemma 4.2. For any two sound abstractions P a and P b of P , the meet P a⊓P b is also a sound

abstraction of P .

Proof.

P ⊑ γ(P a) (sound abstraction) ⇒ α(P) ≼ P a (Galois connection), and similarly

P ⊑ γ(P b) (sound abstraction) ⇒ α(P) ≼ P b (Galois connection)

Therefore α(P) ≼ P a⊓P b (meet definition) and hence P ⊑ γ(P a⊓P b) (Galois connection).

72 Chapter 4. Combining Equality Saturation with Abstract Interpretation

4.1.2 Application to E-graphs

Consider an e-graph. As in Chapter 3, let C denote the set of e-classes, and Nc the set of nodes

in the equivalence class c ∈ C. With each e-class, associate an abstraction A ∈ A and write

AJcK = A. Interpreting an m-arity node n of function f with child classes c1, ..., cm, using an

arbitrary sound abstraction f̄ :

AJnK = f̄ (AJc1K, ...,AJcmK) . (4.1)

0-arity nodes are either constants with exact abstractions in A or variables with user specified

abstract constraints.

For acyclic e-graphs, the known abstractions are propagated upwards using (4.1), taking the

greatest lower bound (meet) across all nodes in the e-class.

AJcK =
l

n∈Nc

AJnK (4.2)

The propagation algorithm is described in Figure 4.3, where

make(n) = AJnK and meet(A1, A2) = A1 ⊓ A2.

These functions are analogous to those described for an e-class analysis [15], but replace their

join with a meet. Since Lemma 4.2 holds using a join, an e-class analysis can merge abstract

elements using a meet or a join depending on whether the abstract poset ⟨A,≼⟩ is a meet-

semilattice or a join-semilattice. If ⟨A,≼⟩ is a lattice, there is choice in how abstract elements

are combined.

Lifting the abstract analysis from expressions to e-classes of expressions constructs a more pre-

cise analysis. In the abstract domain the notion of equivalence is different, na, nb ∈ Nc ̸⇒

AJnaK = AJnbK, which results in tighter abstractions since the meet corresponds to a more

precise abstraction in A. Figure 4.1 provided examples that demonstrate this precision refine-

ment. In the algorithm in Figure 4.3, by initializing the workqueue with only the modified

4.1. Theory 73

workqueue = egraph . c l a s s e s () . l e av e s ()

while ! workqueue . i s empty ()
s = workqueue . dequeue ()

for n in s . nodes ()
sk ip node = f a l s e

for c h i l d s in n . ch i l d r en ()
i f c h i l d s . u n i n i t i a l i z e d

workqueue . enqueue (s)
sk ip node = true

i f sk ip node
continue

e l i f s . u n i n i t i a l i z e d
s . data = make(n)
s . u n i n i t i a l i z e d = f a l s e
workqueue . enqueue (s . parents ())

e l i f ! (s . data <= meet (s . data , make(n)))
s . data = meet (s . data , make(n))
workqueue . enqueue (s . parents ())

Figure 4.3: Pseudocode for abstract property propagation in an e-graph.

e-classes after application of a rewrite, the abstract properties of the e-graph can be evaluated

on the fly. On-the-fly evaluation facilitates the application of additional conditional rewrites as

more precise properties are discovered during construction. Section 4.3 quantifies the extent to

which this enhances the reach of equality saturation.

A positive feedback loop is created by combining AI and e-graphs (Figure 4.2), enhancing the

value of the interaction observed in [96]. A larger space of equivalent expressions is explored as

more rewrites can be proven to be valid at exploration time. In turn, e-class abstractions are

further refined by discovering more equivalent expressions, allowing even more valid rewrites,

and the cycle continues. Further refinement comes from the fact that several equivalent expres-

sions can contribute to the tight final abstraction. An interval arithmetic (IA) example of this

is shown in Section 4.2, where one expression in the e-class contributes the tight lower bound

whilst another distinct expression contributes the tight upper bound.

74 Chapter 4. Combining Equality Saturation with Abstract Interpretation

1
1−e

∼= 1 + e ∗ 1
1−e

Figure 4.4: An example of a cyclic e-graph. The cycle is highlighted using red arrows.

4.1.3 Cyclic E-graphs and Fixpoints

Although rarely explored, cyclic e-graphs arise when an expression is equivalent to a sub-

expression of itself with respect to concrete semantics. An example is shown in Figure 4.4.

Given the possibility of introducing e-graph cycles, it is useful to define how the abstract

elements propagate through a cyclic e-graph. Without loss of generality, let e ∼= e′ where

e appears as a subterm in e′. Let f : D → D be the interpretation of e′ as a (concrete)

function of JeKρ, so that – in particular – f(JeKρ) = JeKρ due to the congruence and hence

JeK = {f(JeKρ) | ρ ∈ I}. Note that f may depend on other subterms, which have been absorbed

into the function to simplify the notation. Abstracting f via a sound abstraction f̄ , yields the

corresponding abstract fixpoint equation a = a ⊓ f̄(a) where the meet operation arises from

(4.2) and a represents the abstract element associated with the e-class containing e.

Now consider the function f̃(a) = a ⊓ f̄(a). The decreasing sequence defined by an+1 = f̃(an)

corresponds to applying the abstract property propagation around a cycle in the e-graph, given

an initial sound abstraction a0 of JeK.

Lemma 4.3. α(JeK) is a fixpoint of f̃ .

4.1. Theory 75

Proof.

α(JeK) = α ({f(JeKρ) | ρ ∈ I}) (congruence)

≼ f̄(α(JeK)) (sound abstraction)

Hence f̃(α(JeK)) = α(JeK) ⊓ f̄(α(JeK)) = α(JeK) (meet definition).

Lemma 4.4. an is a sound abstraction of JeK for all n ∈ N.

Proof. By induction, JeK ⊑ γ(a0) and assume JeK ⊑ γ(an). JeK = {f(JeKρ) | ρ ∈ I} ⊑ γ(f̄(an))

(sound abstraction of f). Hence an+1 = an ⊓ f̄(an) is a sound abstraction of JeK (Lemma 4.2)

for all n.

Collecting these results, for some fixpoint a∗

α(JeK) ≼ a∗ ≼ . . . ≼ a1 ≼ a0. (4.3)

Thus computing abstractions around the loop refines the abstraction and is guaranteed to

terminate if the lattice ⟨A,≼⟩ satisfies the descending chain condition, as any finite abstract

domain will [133]. Note that the fixpoint a∗ is neither guaranteed to be greatest, least nor

unique. This can be seen because the bottom element of the lattice is a fixpoint of f̃ , but from

(4.3) the computed fixpoint is bounded below by α(JeK). Furthermore, for any f̄ such that

f̄(⊤) = ⊤, the top element of the lattice is also a fixpoint of f̃ . The algorithm in Figure 4.3

will correctly apply abstract property propagation around loops, terminating if the sequence

an converges in a finite number of steps. For abstract domains with infinite descending chains

standard techniques such as widening/narrowing apply [134]. Section 4.3.3 shall demonstrate

how e-graph cycles can be used to discover helpful iterative refinement loops.

76 Chapter 4. Combining Equality Saturation with Abstract Interpretation

4.2 Implementation

The theory described above is evaluated via an implementation of IA [135] for extended real

valued expressions, D = R ∪ {−∞,+∞}, as an e-class analysis using egg [15]. The imple-

mentation considers a concrete domain corresponding to sets of extended real numbers, i.e.

K = P(D) where P denotes the power set. Each expression is associated with a binary64

(double precision) [80] valued interval (a finite abstract domain),

A = {[a, b] | a ≤ b, a, b ∈ binary64 \ {NaN}} ∪ {∅}.

In this setting the abstraction and concretization functions are as follows (infima/suprema

always exist in this setting as can always take ±∞):

⟨K,⊆⟩
α

⇄
γ
⟨A,⊆⟩ (4.4)

α(X) = [round down(infX), round up(supX)] (4.5)

γ([a, b]) = [a, b] (4.6)

α(∅) = ∅, γ(∅) = ∅ (4.7)

This work supports the following set of operators, +, -, ×, /,
√
, pow, exp and ln. Correctness is

ensured through, the use of ‘outwardly rounded IA’ which conservatively rounds upper bounds

towards +∞ (round up) and lower bounds towards −∞ (round down) [135, 136]. For the

elementary functions,
√
, exp and ln, default library implementations are used. Since it is not

possible to control the rounding mode, the implementation conservatively adds or subtracts

one unit in the last place for upper and lower bounds respectively. If NaNs do not appear in the

initial analysis of the input expression evaluation it is assumed they are not generated by the

e-graph exploration. In the implementation, if a NaN occurs in the computation of the analysis

it will halt execution, although this was not observed during the evaluation. Furthermore

abstract intervals containing −0 shall be mapped by γ to sets containing 0 ∈ D.

The implementation uses an abstraction of a given function f , f̄ = α ◦ f ◦ γ. For e-class c

4.2. Implementation 77

Table 4.1: Additional IA optimization rewrites, beyond the standard arithmetic identities.
Several rewrites are taken from [135].

Name Left-hand Side Right-hand Side Condition

Subtract Common ab− b (a− 1)b True

Factorize ab± ac a(b± c) True

Binomial 1/(1− a) 1 + a/(1− a) 0 ̸∈ J1− aK
Fractional Add b/c± a (b± ac)/c 0 ̸∈ JcK
Invert Division a/b 1/(b/a) 0 ̸∈ JaK ∪ JbK
Expand Division a/b 1 + (a− b)/b 0 ̸∈ JbK
Basic Quadratic a2 − 1 (a− 1)(a+ 1) True

Log Exponential ln(ea) a True

Cancel Inverse a(1/a) 1 0 ̸∈ JaK

under this interpretation, (4.2) uses the intersection operation, the meet operation of the lattice

of intervals.

AJcK =
⋂

n∈Nc

AJnK (4.8)

This relationship generates monotonically narrowing interval abstractions. 0-arity nodes rep-

resent either constants associated with degenerate intervals or variables taking user defined

interval constraints.

The classical problem of IA is the so-called ‘dependency problem’, arising because the domain

does not capture correlations between multiple occurrences of a single variable. Consider an

input x ∈ [0, 1], under classical IA:

AJx− xK = [0, 1]− [0, 1] = [0− 1, 1− 0] = [−1, 1]. (4.9)

The e-graph framework discovers, via term rewriting, x− x ∼= 0 and by (4.8) the expression is

now correctly abstracted by the (much tighter) degenerate interval [0, 0].

A set of 39 rewrites is used, defining equivalences of real valued expressions. The basic arith-

metic rewrites are commutativity, associativity, distributivity, cancellation and idempotent op-

eration reduction across addition, subtraction, multiplication and division. Conversion rewrites

78 Chapter 4. Combining Equality Saturation with Abstract Interpretation

describe the natural equivalence between the power function and multiplication/division. Ta-

ble 4.1 contains the remaining rewrites. Beyond these rewrites, more complex quadratic polyno-

mial factorization rewrites using the quadratic formula and completing the square are included,

checking that the polynomial has real roots to avoid complex numbers.

Conditional rewrites, e.g. “Invert Division”, are only valid on a subset of the input domain. Via

IA the e-graph can prove the validity of such rules. In (4.10) IA can confirm that 0 ̸∈ Jx+yK, in

order to remove multiple occurrences of variables resulting in expression bound improvements.

x+ y

x+ y + 1
→ ... → 1

1 + 1
x+y

(4.10)

As noted earlier, multiple expressions in an e-class can independently contribute to a more

precise abstraction. Consider the equivalent expressions shown in Figure 4.5 for variables

x ∈ [0, 1] and y ∈ [1, 2]. All three reside in the same e-class with associated interval [−3, 1
3
] ∩

[−2, 0] ∩ [−1, 1] = [−1, 0]. The e-graph generates a tight interval enclosure using distinct, yet

equivalent, expressions for the upper and lower bounds.

4.3 Results

Based on the theory introduced above a real valued expression bounding tool is developed in

Rust using the egg library. The evaluation aims to answer the following research questions.

1. Does the interval analysis allow conditional e-graph rewriting to explore a larger space of

equivalent designs?

2. Can combining interval arithmetic and equality saturation provide tighter interval bounds

than a naive interval analysis?

3. Do cyclic e-graphs provide any practical benefit?

4.3. Results 79

1− 2y
x+y

∈
[
−3, 1

3

]

∼= x−y
x+y

∈ [−2, 0]

∼= 2x
x+y

− 1 ∈ [−1, 1]

Figure 4.5: An e-graph representing three equivalent expressions. Each expression contains two
variables subject to input range constraints, x ∈ [0, 1] and y ∈ [1, 2]. The input intervals are
propagated through the e-graph via an e-class analysis (described in Section 2.4.2). In the root
e-class three interval abstractions are combined, where distinct expressions contribute the most
precise upper and lower interval bounds.

0 0.2 0.4 0.6 0.8 1

Relative Width

0 2 4 6 8

Runtime (sec)

Figure 4.6: Relative interval width (optimized width/naive width) and runtime boxplots to
demonstrate the distribution of results on the FPBench suite.

80 Chapter 4. Combining Equality Saturation with Abstract Interpretation

4.3.1 Benchmark Selection

The implementation is evaluated using 40 benchmarks from the FPTaylor [137] supported

subset of the FPBench benchmark suite [130]. Four iterations of e-graph rewriting are used,

as further rewriting iterations do not yield significant improvements in interval width on these

modest benchmarks. All test cases were run on an Intel i7-10610U CPU.

4.3.2 Evaluation

Across these benchmarks, the inclusion of IA and domain specific rewrites increased the number

of e-graph nodes by 4% on average but by up to 84% in one case. This demonstrates the

additional rewrites that have been applied as a result of combining equality saturation and

AI. The overhead of incorporating IA into the e-graph increased runtimes by less than 1% on

average, although this will grow with the complexity of the analysis being performed. Figure 4.6

summarizes the distribution of the results, showing a modest average interval reduction over

naive IA, but a substantial improvement in particular cases. There is little correlation between

the runtime and bound improvement. Note that the exact impact of the additional nodes on

the interval refinement was not evaluated.

4.3.3 Iterative Method Discovery

Section 4.1.3 discussed how cyclic e-graphs naturally lead to abstraction refinement loops.

In program analysis such refinement loops can correspond to iterative refinement algorithms,

evaluated until a user-defined limit. This section demonstrates how cyclic e-graphs can be used

to rediscover known iterative refinement algorithms, specifically the Krawczyk method [135].

The Krawczyk method [135] is a known algorithm to generate increasingly precise element-wise

interval enclosures of solutions of linear systems of equations Ax = b, where A is an n-by-n

matrix and b is an n-dimensional vector. Letting X0 be an initial interval enclosure of the

4.3. Results 81

solutions, the Krawczyk method uses an update formula of the form,

Xk+1 =
(
Y b+ (I − Y A)Xk

)
∩Xk, where Y = mid(A)−1.

mid(A) is the element-wise interval midpoint of the matrix, A. This sequence, via interval

extension and intersection, corresponds to a sequence of tightening bounds on the solution x,

which converges provided the matrix norm ||I − Y A|| < 1.

Consider a specific instance of this problem,






1 y

y 1











x1

x2




 =






b1

b2




 , where y ∈

[

−1

2
,
1

2

]

. (4.11)

Xk+1
1 =

(
b1 − yXk

2

)
∩Xk

1 , X
k+1
2 =

(
b2 − yXk

1

)
∩Xk

2 . (4.12)

A naive solution in the concrete domain, x = A−1b, yields,

x1 =
1

1− y2
(b1 − b2y), x2 =

1

1− y2
(b2 − b1y). (4.13)

Initializing the e-graph with these expressions, the solution for x1 can be automatically rewritten

such that (4.12) arises in the abstract domain.

x1 =
1

1− y2
(b1 − b2y) Binomial (4.14)

→
(

1 +
y2

1− y2

)

(b1 − b2y) Distribute (4.15)

→ b1 −
(

b2y + y
1

1− y2
(b2y

2 − b1y)

)

Factorize (4.16)

→ b1 − y

(

b2 +
1

1− y2
(b2y

2 − b1y)

)

Fractional Add & Simplify (4.17)

→ b1 − y
1

1− y2
(b2 − b1y) Merge E-Class (4.18)

→ b1 − yx2 (4.19)

First, the “Binomial” rewrite from Table 4.1 introduces a loop into the e-graph, creating an

82 Chapter 4. Combining Equality Saturation with Abstract Interpretation

iterative refinement loop. Following the sequence of arithmetic rewrites shown, the e-graph

grows to eventually contain (4.18), implicitly performing the x2 replacement shown in the final

step. As a result, the e-class analysis on the e-class containing x1, corresponds exactly to the

iterative refinement loop shown in (4.12). The detailed algebraic rearrangements from this

rewrite list are omitted to avoid unnecessary complexity. Initializing the e-graph with both

equations in (4.13), the tool simultaneously discovers both of the iterative refinement equations

in (4.12).

When a cycle is introduced, the IA update procedure will continue to iteratively evaluate the

loop, taking the intersection with the previous iteration as described in Section 4.1.3. The

ability to discover such iterative refinement methods within the framework not only facilitates

tighter bound generation, but highlights the value in exploring e-graphs containing loops.

4.4 Summary

This chapter took steps towards a complete formalism of the combination of AI and equality

saturation. Of key importance is the positive feedback loop between e-graph exploration and

abstraction refinement, as the extra precision then permits the application of additional condi-

tional rewrite rules. The additional applications introduce further new expressions, which may

further improve abstraction precision. An exemplar IA implementation demonstrates the value

of this pairing, even automating the discovery of a known iterative refinement algorithm. Many

equality saturation applications could incorporate AI to extend their capabilities for relatively

low overhead.

Whilst this chapter focused on the theoretical description of combining AI and equality satura-

tion. The remaining chapters make practical use of the program analysis techniques formalized

here, describing a bitvector value range analysis on the e-graph that estimates the range of

possible outputs from an e-class following the VeriLang semantics. This analysis will help

ROVER to capture new optimizations such as the bitwidth reduction opportunity described

at the start of this chapter. Chapter 5 will evaluate the circuit optimizations enabled by this

4.4. Summary 83

bitvector analysis. Chapters 5 and 6 will also introduce several additional analyses, all based

on the formal framework described here.

Chapter 5

Automating Constraint-Aware

Datapath Optimization using E-Graphs

The previous two chapters described the foundations of an equality saturation based RTL

rewriting framework, and formalized the connection between equality saturation and program

analysis. This chapter further extends the optimization capabilities of equality saturation,

describing how to encode context within an e-graph setting in Section 5.1. Context encodes

the constraints under which a circuit (or sub-circuit) executes, and is frequently exploited by

engineers to apply deeper optimizations to their designs. For the remainder of this thesis, we

shall call optimization that exploits context, constraint-aware optimization. Section 5.2 extends

ROVER with a bitvector value range analysis based on the framework introduced in Chapter 4

and new constraint-aware optimization capabilities. This chapter will primarily focus on the

constraint-aware optimization but also highlights a beneficial interaction between the context

encoding and analysis.

Constraint-aware optimization provides an opportunity to exploit common control structures

such as code branches. Such control structures are commonplace in hardware and software, but

automating constraint-aware optimization is challenging, because one must infer the impact

of a constraint on an arbitrary code segment. This involves automatically identifying variable

correlations and performing a reasoning step.

84

85

(x>0 ? f(abs(x)) : 0) ∼=
(x>0 ? f(x) : 0)

Figure 5.1: An e-graph representing two expressions, which are equivalent due to the constraint
imposed by the conditional branch.

Constraint-aware optimization can be reduced to a combination of domain refinement and sub-

domain equivalence. This perspective helps to bridge the gap between constraint-aware opti-

mization and equality saturation. A fundamental limitation of the e-graph is that all rewrites

define equivalence with respect to the same equivalence relation. This will be problematic in

the context of constraint-aware optimization. Consider the equivalent expressions shown in

Figure 5.1, containing an arbitrary function f. Whilst these two expressions are clearly equiv-

alent, it is difficult to express via local rewrites since, in general, the rewrite abs(x) → x is not

valid. However, the constraint-aware rewrite x > 0 ⇒ abs(x) → x is always valid.

Taking inspiration from the program analysis community [98], one general solution to encode

sub-domain equivalences in an e-graph is via the introduction of special ASSUME operators

that localize constraints. By defining rewrites over ASSUME operators it is possible to encode

constraint-aware optimizations within an e-graph setting. This is valuable because these opti-

mizations can be combined with existing work to enhance equality saturation based optimizers.

Furthermore, the e-graph can efficiently explore a range of constraint-aware optimizations,

deferring the profitability evaluation to a later implementation selection stage.

Constraint-aware optimization is of significant importance in datapath circuit design. Con-

strained sub-circuits occur naturally when a designer inserts a conditional mux, joining two

86 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

branches. Such conditions are manually exploited by expert engineers as they often represent

additional optimization opportunities. In fact, designers may even specifically insert case-

splitting muxes to facilitate further performance optimization. State-of-the-art floating point

adder architectures, utilize a carefully designed case-split [47, 46].

To demonstrate the value of constraint-aware optimization, the theory is applied to ROVER,

showing that these manual optimizations can be automated and generalized by a constraint-

aware e-graph rewriting framework. With these enhancements ROVER combines constraint-

aware rewriting with a bit-accurate value range analysis. ROVER’s cost model is also extended,

allowing the tool to target critical path delay reduction for datapath designs, but also capable

of balancing the area-delay trade-off generating a Pareto frontier of implementations.

The chapter is organized as follows. Section 5.1 first describes the key contribution of this work,

the ASSUME operator, and how it enables the expression of sub-domain equivalence relations in

the e-graph data structure. Section 5.2 describes the integration of constraint-aware optimiza-

tion into ROVER, exploiting context in circuit designs. Lastly, Section 5.3 demonstrates the

impact on circuit performance and area using this technique.

The work described in this chapter was first published at DAC in 2023 [138], and was later

followed by a 2024 journal extension published in TCAD [139]. This chapter contains the

following novel contributions:

• a general purpose encoding of multiple equivalence relations and constraint-aware opti-

mization via e-graph rewriting,

• an accurate value range analysis for bitvector arithmetic in RTL designs,

• a theoretical model of circuit delay and an ILP method to balance the area-delay trade-off

and generate a Pareto frontier of designs,

• detailed case-studies and benchmark results demonstrating the automation of sophisti-

cated RTL optimization.

5.1. Localizing Constraint-Aware Optimization 87

5.1 Localizing Constraint-Aware Optimization

Following the notation introduced in Section 4.1.1, (pg. 70), let Expr denote the set of all

representable expressions of n variables, ranging over a domain D. The inputs are restricted

to I ⊆ Dn to encode constraints on each input variable, imposed by a type declaration or

otherwise. The following then defines a concrete semantics of expressions

J·K· ∈ Expr → I → D. (5.1)

Under these semantics JeKρ denotes the interpretation of expression e under execution environ-

ment ρ ∈ I. For example, let I = Z
2 and let a and b denote free variables. If ρ = {a 7→ 2, b 7→ 3},

then Ja+ bKρ = 2 + 3 = 5.

5.1.1 Sub-Domain Equivalence

An e-graph represents a single congruence relation, as given in Definition 4.4 (pg. 71). This

notion of congruence requires equality across the entire domain of possible inputs I. However,

the presence of input constraints and code branches means that many sub-expressions are only

ever evaluated (or are only utilized when evaluated) on a restricted subset of I, constituting a

domain refinement. Consider again the example given in Figure 5.1 and let x ∈ Z. The true

branch imposes a domain refinement, such that on this branch x ∈ N \ {0}. As a result, the

requirement on such a strict notion of equivalence for such sub-expressions can be relaxed.

To specify equivalence on a restricted domain, consider I ′ ⊆ I and define a sub-domain con-

gruence relation.

Definition 5.1 (Sub-Domain Congruence). Given I ′ ⊆ I, two expressions ea and eb are con-

gruent in the sub-domain defined by I ′, ea ∼=I′ eb, iff JeaKρ = JebKρ for all ρ ∈ I ′.

Note that, for I ′ ⊂ I, ea ∼=I′ eb ̸⇒ ea ∼= eb. Such sub-domain congruence relations form a

lattice [105], where the top element is represented by ∼= and the bottom element is represented

88 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

by ∼=∅, as all expressions are congruent on the empty set. The meet and join of this lattice are

defined as follows.

∼=I1 ⊓ ∼=I2 :=
∼=I1∩I2 (5.2)

∼=I1 ⊔ ∼=I2 :=
∼=I1∪I2 (5.3)

In practice, sub-domain equivalence relations become relevant in the presence of conditional

branches and input constraints. Let BoolExpr ⊆ Expr denote the subset of expressions that

under evaluation map to {True, False}. Given c ∈ BoolExpr, let JcKT = {ρ ∈ I | JcKρ = True},

namely the sub-domain on which c evaluates to true. Vice versa, let JcKF denote the sub-domain

on which c evaluates to false. These sets correspond to congruence relations satisfying:

∼=JcKT ⊔ ∼=JcKF= ∼= . (5.4)

The implementation of constraint-aware optimization utilizes the following observation:

ea ∼=JcKT eb ⇐⇒ c ⊨ ea ∼= eb. (5.5)

The ⊨ denotes entailment, which is true when the right-hand side logically follows from the

left-hand side. Figure 5.1 demonstrates an example of a valuable sub-domain equivalence.

5.1.2 Sub-Domain Equivalence in an E-Graph

All e-classes within an e-graph are equivalence classes with respect to a single concrete notion

of congruence, ∼=, therefore defining any rewrite ea → eb ⇒ ea ∼= eb. To represent sub-

domain congruence relations, consider a special ASSUME operator. The ASSUME operator takes

two operands, an Expr to evaluate and a BoolExpr that defines the sub-domain of interest.

To the input domain D, append an additional special element, forming a new domain D′ =

D ∪ {⊥}. Using this element, ⊥, the semantics of ASSUME can be defined, such that only

when the condition holds is the result of the expression of interest, and everywhere else, two

5.1. Localizing Constraint-Aware Optimization 89

ASSUME operators with identical conditions will match.

JASSUME(x, c)Kρ =







JxKρ if JcKρ,

⊥ otherwise.

(5.6)

Also define for any n-ary function f , if any JxiK = ⊥:

Jf(x1, . . . , xn)K = ⊥. (5.7)

It follows from (5.6) that:

x ∼=JcKT y ⇔ ASSUME(x, c) ∼= ASSUME(y, c). (5.8)

Crucially, for ρ ∈ JcKF , the equivalence in (5.8) is vacuously satisfied. Returning to the example

in Figure 5.8. It is possible to encode the desired equivalence as

ASSUME(abs(x), x > 0) ∼= ASSUME(x, x > 0). (5.9)

Table 5.1 describes a set of rewrites, encoding the creation, propagation and refinement of

ASSUME operators. In this work, ASSUME operators are derived purely from code branches. The

“Propagate” rewrite allows ROVER to localize reasoning tasks, encoding the search to locate

the constrained sub-expression. Consider the following example, where f and g represent

arbitrary functions:

ASSUME(f(g(x)), x == 1) → f(ASSUME(g(x), x == 1))

→ f(g(ASSUME(x, x == 1))).

Propagating an ASSUME operator through an e-graph duplicates the sub-e-graph, a potentially

costly overhead. In circumstances where there is no constrained sub-expression in the branch,

this adds useless nodes to the e-graph and is unlikely to yield profitable optimization opportu-

90 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

nities. By maintaining a live e-class analysis on the e-graph it is possible to guide sub-e-graph

duplication, only propagating ASSUME operators when it may be profitable. To track live e-

classes, with each e-class associate a list of e-classes reachable via any path starting from that

e-class. More formally, let E denote the set of e-graph edges and L(x) return the live e-classes

associated with e-class x. Then L is calculated as follows.

L(x) = {x} ∪
⋃

n∈x
(n,y)∈E

L(y)

Note that this e-class analysis uses the lattice join (union) to combine abstract elements in

the domain of sets of e-classes, as opposed to the lattice meet used in Section 4.2. To utilize

this analysis, the “Create” rewrites, defined in Table 5.1, are conditionally applied when the

live-variables of the constraint e-class and evaluated expression have a non-empty intersection.

More formally, for an expression over e-classes a, b and c,

if L(a) ∩ L(b) ̸= ∅

a ? b : c → a ? ASSUME(b, a) : c.

In hardware design, control signals, such as resets, do not offer datapath optimization op-

portunities since they are typically not correlated with the data signals. Following the same

approach, the “Propagate” rewrite is also conditionally applied based on the live class analysis.

Such a conditional ASSUME creation and propagation approach only introduces the overhead of

e-graph duplication when it has the potential to be profitable. Empirical evidence to support

this is provided in Section 5.3.

In the presence of nested mux structures, constraints on a sub-expression can be accumulated

via the “Combine” rewrite. The combination of constraints may yield conflicts, which, after ap-

plying Boolean rewrites, produces an ASSUME(a, False) expression. This expression corresponds

to dead-code, which can be eliminated by rewriting to something trivial e.g. ASSUME(0, False).

This is shown as the first “Refine” rewrite in Table 5.1. The last two “Refine” rewrites represent

other dead-code elimination optimizations.

5.1. Localizing Constraint-Aware Optimization 91

Table 5.1: ASSUME node rewrites, describing creation, propagation and refinements. op repre-
sents any operator defined in the expression language. The two argument op extends naturally
to arbitrary arity. Boolean negation is represented by ∼.

Name Left-Hand Side Right-Hand Side

Create
a ? b : c a ? ASSUME(b, a) : c
a ? b : c a ? b : ASSUME(c, ∼ a)

Propagate ASSUME((a op b), c) ASSUME(a, c) op ASSUME(b, c)

Combine ASSUME(ASSUME(a, b), c) ASSUME(a, b& c)

Refine
ASSUME(a, False) ASSUME(0, False)
ASSUME((a ? b : c), a) ASSUME(b, a)
ASSUME((a ? b : c), ∼ a) ASSUME(c, ∼ a)

The general rewrites in Table 5.1 can be extended to encompass application specific optimiza-

tions, for example (5.9). To illustrate the advantage of combining constraint-aware optimization

with equality saturation, consider this toy example.

x == y ? x+ y : z (5.10)

Whilst a simplified expression is obvious to a human, this may prove challenging for a traditional

optimizer. However, the simplification can be realized via constraint-aware optimization and

equality saturation using just three rewrites.

x == y ? x + y : z →

x == y ? ASSUME(x + y, x==y) : z →

x == y ? ASSUME(y + y, x==y) : z →

x == y ? ASSUME(2y, x==y) : z

5.1.3 Program Analysis Refinement

ASSUME operators encode sub-domain equivalences via specifically defined rewrites. However,

the origins of ASSUME operators lie in abstract interpretation [98], where they modify an ab-

stract element assuming the associated constraint holds. This hints at a connection to the

theory described in Chapter 4. As in Chapter 4, for a given expression, e, abstract interpreta-

tion associates an abstract element AJeK with that expression, and similarly, given an e-class

92 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

c, associates an abstract element AJcK with each e-class. In an e-graph representation of the

ASSUME operator, its children are in fact e-classes which, via an e-class analysis, have an as-

sociated abstract element. Therefore, the abstract interpretation definition of ASSUME can be

naturally transferred and applied to an e-graph. Furthermore, by lifting the analysis to the

e-class level, the complex equational reasoning about how the constraint affects the analysis is

simplified to a syntactic check. This will be illustrated via an example.

Consider a simple example based on interval arithmetic.

x>y ? x - y : y - x (5.11)

Let AJxK = AJyK = [0, 255] and let AJc ? a : bK = AJaK ⊔AJbK. A naive interval analysis

yields an overapproximation.

AJx - yK = AJy - xK = [−255, 255] ⇒

AJx>y ? x - y : y - xK = [−255, 255]

Introducing ASSUME operators as described in Section 5.1.2 yields two new expressions to inter-

pret.

AJASSUME(x - y, x>y)K = ? (5.12)

AJASSUME(y - x,∼ x>y)K = ? (5.13)

Whilst the reasoning required to infer the implication of the assumed condition on the ab-

stract element is not difficult, it is non-trivial. In contrast, by applying additional rewrites to

an e-graph containing these ASSUME operators, as shown in Figure 5.2, the reasoning can be

5.1. Localizing Constraint-Aware Optimization 93

c2

c1

Figure 5.2: An e-graph demonstrating abstract element refinement via ASSUME nodes. The
original design is marked by light grey arrows. The green nodes represent the additional nodes
added via rewriting that enable the interval refinement. Each e-class is associated with an
interval of possible outputs. Two e-classes are annotated with additional labels c1 and c2, as
these represent the constrained e-classes.

94 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

simplified.

(5.12) = AJASSUME(c1, c1 > 0)K = [−255, 255] ∩ [1,∞)

= [1, 255]

(5.13) = AJASSUME(c2, c2 ≥ 0)K = [−255, 255] ∩ [0,∞)

= [0, 255]

Here, c1 and c2 denote the e-classes in Figure 5.2 containing x-y and y-x, respectively. These

are the two subtraction classes in Figure 5.2. Recall from Section 4.2, that the intersection is

the meet of the lattice of intervals, and that the meet of two valid abstract approximations is

a valid abstract approximation. For an interval analysis, such as that described in Chapter 4,

define the abstraction of the ASSUME operator.

AJASSUME(e, c)K = (AJeK ∩ I) , where for arbitrary constant k

I =







(−∞, k) if (e < k) ∈ c

(−∞, k] if (e ≤ k) ∈ c

(k,∞) if (e > k) ∈ c

[k,∞) if (e ≥ k) ∈ c

[k, k] if (e == k) ∈ c

(−∞, k) ∪ (k,∞) if (e ̸= k) ∈ c

(−∞,∞) otherwise.

(5.14)

To perform the analysis shown in (5.14), requires the detection of which expressions are con-

tained in the set of expressions represented by the constraint e-class c. This e-class c may

contain compound expressions, such as (e < k)&(e > l), or several different representations

of the same constraint. In Figure 5.1, after applying the standard comparator rewrites shown

in Table 5.2, one constraint e-class contains both ∼ x > y and y-x ≥ 0. Only this second

representation is considered analysis-friendly. To simplify the identification of constraint ex-

5.2. RTL Performance Optimization 95

Table 5.2: Comparator rewrites to simplify ASSUME operator analysis refinement. We use op to
denote any operator in {≤, <,==, ̸=,≥, >}.

Class Left-hand Side Right-hand Side Condition

Comp to Subtract
a op b a− b op 0 a ̸= 0 & b ̸= 0
a op b 0 op b− a a ̸= 0 & b ̸= 0

Invert Comp

∼ (a == b) a ̸= b True
∼ (a > b) a ≤ b True
∼ (a ≥ b) a < b True
∼ (a < b) a ≥ b True
∼ (a ≤ b) a > b True

pressions, e.g. (e ≤ k) ∈ c, an analysis-friendly representative is extracted from the e-class c.

The analysis-friendly representative prioritizes the expressions shown in (5.14), reducing the

search to a simple pattern match.

Propagating the abstract elements associated with ASSUME operators will yield an overall pro-

gram analysis refinement. As shown in Chapter 4 and later realized in an RTL optimization

setting in Section 5.3, a tighter program analysis may enable additional rewriting opportuni-

ties. The precise abstract interpretation of ASSUME will depend upon the particular abstract

domain, but the reasoning simplification due to the e-graph representation will be common to

all implementations. Section 5.2 will demonstrate the benefits of abstraction refinement via a

bitvector value range analysis which is added to ROVER.

5.2 RTL Performance Optimization

The previous section described how to theoretically encode constraint-aware optimization via

e-graph rewriting. This section demonstrates a practical realization of the theory by extending

ROVER with constraint-aware optimization capabilities. Figure 5.3 provides an overview of

the tool flow, where the components affected by the extension are highlighted. This chap-

ter first extends VeriLang to incorporate an ASSUME operator with the semantics described in

Section 5.1. Next a set of RTL rewrites is introduced that realizes the constraint-aware data-

path optimizations described above. To perform an RTL based bitvector value range analysis,

96 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

Input
Verilog

Slang

JSON

ROVER Front-End

VeriLang

egg

E-Graph

Rewrite and Analyze

Extraction

VeriLang

ROVER Back-End

Opt.
Verilog

Proof Production

VeriLang

ROVER Back End

Intermediate
Verilog 1

Intermediate
Verilog 2

· · · Intermediate
Verilog n

EC EC EC

Figure 5.3: Flow diagram describing the operation of constraint-aware ROVER. Components
that remain largely unmodified from Chapter 3 are grayed out.

ROVER implements an e-class analysis on the VeriLang e-graph. Lastly, to target performance

optimization, ROVER gains an RTL delay model, that captures downstream logic synthesis

optimizations. ROVER again focuses on combinational RTL designs in this work, but, as we

will see in Chapter 6, can easily be generalized to pipelined designs.

5.2.1 Value Range Analysis

Each signal within the design and in the corresponding e-graph represents a bitvector. ROVER

conservatively estimates the range of possible values of each signal using a finite union of positive

integer intervals. To be precise, with each expression ROVER associates an element of the set:

A =

{
n⋃

i=1

[ai, bi] | ai ≤ bi, ai, bi ∈ N, n ∈ N

}

.

ROVER encodes a value range analysis as an e-class analysis (as described in Section 2.4),

associating an element of the setA with each e-class. In RTL, each module input, corresponding

to a variable in the e-graph, is defined with an associated bitwidth. ROVER conservatively

assumes that all inputs are possible, therefore initializes the e-class analysis for an n-bit input

to [0, 2n − 1]. Input value constraints could be captured using an alternative initialization.

5.2. RTL Performance Optimization 97

Bitwidth truncation is encoded using a conservative approximation to modular intervals.

[l, u] mod p =







[l mod p, u mod p] if
⌊

l
p

⌋

==
⌊
u
p

⌋

[0, p− 1] otherwise.

The outputs of each RTL operator are approximated using an interval arithmetic that follows

the Verilog semantics. ROVER stores unions of unsigned integer intervals for all signals, even

those defined to be signed. Signage is encoded in the interval analysis of the individual opera-

tors. To implement this, define two conversion functions, each parameterized by target bitwidth

n ∈ N. Sn mapping an unsigned interval to its 2’s complement interpretation, and Un mapping

an arbitrary integer interval to its unsigned interpretation in n-bits.

Sn : {[a, b] | a, b ∈ N, a ≤ b < 2n} →
{
⋃

i=1

[ai, bi] | ai, bi ∈ Z,−2n−1 ≤ ai ≤ bi < 2n−1

}

Un : {[a, b] | a, b ∈ Z, a ≤ b} →
{
⋃

i=1

[ai, bi] | ai, bi ∈ N, ai ≤ bi < 2n

}

Sn([x, y]) =







[x, y] if y < 2n−1

[x− 2n, y − 2n] elif x ≥ 2n−1

[x, 2n−1 − 1] ∪ [−2n−1, y − 2n] otherwise

Un([w, z]) =







[0, 2n − 1] if
⌊

w
2n

⌋
<
⌊

z
2n

⌋
− 1

[0, z∗] ∪ [w∗, 2n − 1] elif
⌊

w
2n

⌋
<
⌊

z
2n

⌋

[w∗, z∗] otherwise

,where z∗ = z mod 2n, w∗ = w mod 2n.

These conversion functions demonstrate the need for unions of intervals, rather than simple

intervals alone. Consider the following System Verilog example that demonstrates the effect of

bit-slicing and using signed signals.

98 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

wire [7 : 0] a ;

wire [3 : 0] b ;

wire [5 : 0] add ;

a s s i gn add = $ s igned (a [4 : 0]) + $ s igned (b) ;

Initializing AJaK = [0, 255] and AJbK = [0, 15], compute

AJ$signed(a[4:0])+ $signed(b)K

= S5

(
[0, 255] mod 25

)
+ S4

(
[0, 15] mod 24

)

= S5([0, 31]) + S4([0, 15])

= [−16, 15] + [−8, 7] = [−24, 22],

AJadd[5:0]K = U6([−24, 22]) = [0, 22] ∪ [40, 63].

Even in this simple example, the analysis identifies that the add signal can only take a subset

of the integer values that can be represented in six bits. Intuitively, ROVER computes the

bitvector interval analysis by converting the bitvectors to integers, performing integer interval

arithmetic, then converting back to bitvectors.

Since Verilog is a context-determined language, the signage of an operator is determined by the

signage of its operands, as specified in the language reference manual (LRM) [2]. The following

procedure is used to calculate the interval abstraction of an arbitrary operator.

1. Determine operator signage according to LRM.

2. Truncate unsigned operand intervals to operand bitwidth and convert to integer intervals

according to signage.

3. Compute integer interval arithmetic abstraction of operator.

4. Convert computed interval to unsigned interpretation using the assigned to bitwidth.

To handle unions of intervals, given an interval abstraction function f , approximate f (
⋃n

i [ai, bi])

by
⋃n

i f ([ai, bi]). A basic algorithm reduces a given union of intervals to the minimum number

5.2. RTL Performance Optimization 99

Table 5.3: Additional VeriLang operators, extending the set described in Table 3.1.

Operator Symbol Arity Architecture

Leading-Zero Count LZC 2 Lookup Table
Absolute Difference ABSDIFF 2 Compound Adder [38]

of unions required. For example, [0, 3] ∪ [4, 7] = [0, 7].

The value range analysis data enables deeper rewrites that go beyond simple syntactic rewrites,

such as bitwidth reduction. These rewrites will be discussed next. Furthermore, when com-

bined with the ASSUME node rewriting, ROVER benefits from the associated program analysis

refinement described in Section 5.1.3.

5.2.2 Constraint and Value Range Aware RTL Rewriting

Table 5.3 introduces new VeriLang operators that describe custom hardware components. In

particular, VeriLang gains a leading-zero count (LZC) operator that takes two arguments, an

input bitvector and a default value that zero is mapped to. Such an expressive LZC operator

allows ROVER to capture hardware optimizations that exploit the fact that the LZC of zero

is typically undefined. The second addition, the absolute value operator, allows ROVER to

express optimizations that rely on a compound adder [38]. Rewrites map typical Verilog imple-

mentations of these components to their VeriLang operators. For example, an LZC is commonly

implemented using a Verilog lookup table. Section 5.3 shall demonstrate that adding the set

of constraint-aware rewrites shown in Table 5.4 to the existing ROVER rewrite set, described

in Chapter 3, greatly expand ROVER’s ability to capture deep optimizations.

For the newly added rewrites, the value range analysis data is accessed whilst rewriting, to

determine the validity of conditional rewrites. For example, let AJaK = [a1, a2] and AJbK =

[b1, b2], then for an unsigned comparison a > b → 1’b1 is valid if a1 > b2. Similarly, the

value range analysis can be used by dynamic rewrites to construct the equivalent right-hand

side based on the analysis data. The most valuable example of this is for bitwidth reduction

rewrites, where ROVER is able to shrink the bitwidth of a given operator if the value range

analysis proves that the values which that operator can take can be represented in fewer bits.

100 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

(a) Initial e-graph represents LZC(x+ y).
(b) LZC(a) → LZC(a ≫ 7). Green nodes are
newly added.

Figure 5.4: An e-graph before and after rewriting. The LZC node denotes a leading-zero
counter. Edges are labeled with bitwidths. The rewrite is valid due to the input constraint,
x ≥ 128, which implies that LZC(x+ y)≤ 1, namely x+ y has at most one leading zero.

For example, consider the following Verilog.

fma [6 : 0] = a [2 : 0] ∗ b [2 : 0] + c [2 : 0]

A naive analysis may consider each operation independently, first a 3-bit multiplication gen-

erating a 6-bit result, followed by a 6-bit addition producing a 7-bit result. In contrast, a

value range analysis shows that AJfmaK = [0, 56], which implies that fma can be reduced to six

bits. According to ROVER’s circuit area model, introduced in Chapter 3, a 6-bit adder is 19%

smaller than a 7-bit adder. Logic synthesis results support ROVER’s model, showing a 17%

reduction in combinational cells. The general form of the bitwidth reduction rewrite is shown

in Table 5.4.

The “Shrink LZC” rewrite, defined in Table 5.4, is a specific instance of bitwidth reduction,

that exploits specific knowledge of the LZC operator. An example application is shown in

Figure 5.4, where the diagram is simplified by omitting the default argument. The value range

analysis proves that the result of the LZC is in [0, 1]. This proves that the leading one must be

5.2. RTL Performance Optimization 101

Table 5.4: Dynamic and conditional rewrites that introduce domain refinement opportunities
or exploit domain knowledge. Where ROVER performs bitwidth modifications, we use left
subscript notation, pa, to denote a bitvector a of length p. We use op to denote any VeriLang
operator and use ≧ to denote both > and ≥. max(e) denotes the maximum value in AJeK. The
bw function returns the minimum width bitvector required to store the largest value in a union
of positive integer intervals.

Class Left-hand Side Right-hand Side

Bitwidth Reduction r(pa op qb) r′(p′a op q′b)

r′ = bw(AJ(pa op qb)K), p′ = bw(AJaK), q′ = bw(AJbK)

Parallelism
a op (b ? c : d) b ? a op c : a op d
(b ? c : d) op a b ? c op a : d op a

Special Case a− (b ≫ c) (c > 0) ? a− (b ≫ c) : a− b

Alignment
(a ≪ const) ≫ b ((a ≪ max(b)) ≫ b) ≪ (const− max(b))

if const > max(b)

Shrink LZC
LZC(pa, d) LZC(m(pa ≫ c), d) if c > 0

m = max
(
AJLZC(pa)K

)
, c = p−m

Simplify Mux
c ? a : b a if AJcK == [1, 1]
c ? a : b b if AJcK == [0, 0]

Absolute Difference
a ≧ b ? a− b : b− a ABSDIFF(a, b)

ABSDIFF(a, b) ABSDIFF(b, a)
ASSUME(a− b, a ≧ b) ASSUME(ABSDIFF(a, b), a ≧ b)

in one of the two most significant bits and hence the LZC taking a 9-bit signal can be replaced

by an LZC considering only the two most significant bits of the input.

In addition to bitwidth reduction, ROVER benefits from a set of hardware specific optimiza-

tions, many of which rely the on value range analysis to prove the correctness of the rewrite.

The “Special Case” rewrite specifically introduces a case-split, which from designer intuition

is known to be valuable. The value of this rewrite will be demonstrated in Section 5.3.1. The

“Absolute Difference” rewrites map expressions to ABSDIFF operators, which can be efficiently

implemented using a compound adder [38]. Section 5.3.4 will demonstrate the application of

these rewrites.

ROVER exploits constraints present in the design itself, which are typically expressed via muxes

in RTL, therefore ASSUME operators are introduced and propagated by applying the rewrites

102 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

introduced in Table 5.1. ROVER further benefits from constraint-aware program analysis

refinement facilitating further bitwidth reductions, ensuring that minimal bitwidths can be

utilized throughout the design.

ROVER’s rewrites are mostly learnt from Intel engineers or are derived from efforts to de-

compose manual optimizations into a sequence of generally applicable transformations. Key

conditional and dynamic rewrites are summarized in Table 5.4. In total ROVER uses 179

rewrites, of which 122 are newly added in this Chapter. Since several rewrites are duplicated

to match different bitwidths, there are only 60 new distinct transformations encoded by these

122 rewrites.

5.2.3 Extraction

The extraction procedure is similar to that described in Section 3.3. ROVER applies rewrites

to the e-graph until saturation or a user defined iteration limit is reached. The extraction

process then selects a set of e-classes to implement and within these e-classes chooses the best

node to implement that particular e-class. The extraction procedure described in Chapter 3

minimized circuit area, however the procedure does not differentiate between designs with the

same circuit area but different circuit delay. For example, the existing procedure does not

differentiate between equivalent combinational circuits ((A&B)&C)&D and (A&B)&(C&D).

Both use three gates, but the first circuit has a delay equal to three gates, whilst the second

circuit has a delay equal to two gates.

Building upon the theoretical area model introduced in Chapter 3, ROVER gains a theoretical

delay model that estimates the number of two input gate delays on the critical path of each

operator, as a function of the input and output parameters. The fixed component architectures

are given in Tables 3.1 and 5.3. Delay accumulates through combinational paths in the design,

therefore the total delay to an operator’s output is the maximum delay across its operands plus

its own delay.

Since design delay depends only on the delay of the longest delay path, a greedy approach to

5.2. RTL Performance Optimization 103

extraction, selecting the minimal delay operator from each e-class, will produce the minimum

delay implementation. This is implemented using the default egg extraction method. Such

an approach does not differentiate between implementations that achieve the same delay but

occupy different circuit areas. For example, a greedy delay extraction does not differentiate

between equivalent combinational circuits A&(B∥C) and (A&B)∥(A&C). Both have a delay

equal to two gates, but the first uses two gates, whilst the second uses three gates.

To correctly select designs with efficient area-delay tradeoffs, the ILP encoding, introduced in

Section 3.3.2, of minimum area extraction is extended with additional delay constraints that

constrain the maximum design delay. With each e-class c ∈ C associate a new integer variable,

dc and define a new set L ⊆ N , of leaf nodes with no children. For each n ∈ L associate

a, potentially zero, input delay input delay(n). To correctly model pipelined circuits, define

ER ⊆ E of edges originating from register operators. To meet a given delay target d > 0, add

the following constraints to the ILP.

∀(n, c) ∈ E \ ER. dC(n) ≥ dc + xn × delay(n)− (1− xn)×K (5.15)

∀n ∈ L. dC(n) ≥ input delay(n) (5.16)

∀c ∈ C. 0 ≤ dc ≤ d (5.17)

Constraint (5.15) ensures that delay accumulates throughout combinational paths in the design

and (5.16) encodes the input delays. The large arbitrary constant K ensures that (5.15) is

vacuously satisfied if xn = 0. Lastly, (5.17) ensures that all paths in the extracted circuit

meet the delay target d. ROVER deploys the CBC solver [126] yielding the minimum area

implementation that meets the total delay constraint d.

Using the greedy extraction method described earlier, ROVER obtains dmin, the minimum

delay that any design in the e-graph can meet. The minimum area implementation in the

e-graph is obtained by solving the original ILP problem, omitting the new delay constraints

(5.15), (5.16) and (5.17). This minimum area design has corresponding delay dmax. Solving

an ILP problem for each delay target d ∈ [dmin, dmax) yields a complete Pareto frontier of

implementations minimizing circuit area at each delay target.

104 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

Solving the ILP problems can be time consuming, but ROVER aides the solver by providing

the initial greedy solution as an initial feasible solution. Seeding with an initial solution can

help to guide the ILP solver and avoids time-outs producing infeasible solutions. The impact

of seeding is not evaluated in this work. ROVER also terminates its delay sweep from dmin to

dmax if, for some d < dmax, the extracted circuit matches the minimum area circuit obtained

at dmax.

The extraction process generates a set of VeriLang expressions, from which ROVER’s back-

end generates a set of System Verilog implementations. For each generated implementation,

ROVER produces an accompanying sequence of intermediate Verilog designs that can be used

to verify that each implementation matches the input design, as shown in Figure 5.3. ROVER’s

back-end and verification method are unchanged from Chapter 3.

5.3 Results

To demonstrate the value of constraint-aware optimization, an in-depth case-study is provided,

with analysis showing exactly how ROVER optimized a floating-point component. A second

case-study, a component from a floating-point dot product, is provided to analyze the results

of the Pareto frontier extraction method, described in Section 5.2.3. Finally, to show its appli-

cability more generally constraint-aware ROVER is used to optimize a range of benchmarks.

To evaluate the quality of the ROVER’s optimizations, the baseline and ROVER generated

designs are synthesized using a commercial synthesis tool for a TSMC 5nm cell library. The

commercial logic synthesis tool includes state-of-the-art datapath optimizations by default [21,

37]. The commercial tool, optimizing the baseline design is used as a comparison point, as in

Chapter 3. The functional equivalence of the original and ROVER generated designs is formally

verified using the approach described in Chapter 3.

5.3. Results 105

5.3.1 Case-Study: Floating-Point Subtract

To illustrate the new optimization capabilities in ROVER, consider a complex datapath block,

a floating-point subtractor computing 2ea × 1.ma− 2eb × 1.mb and producing a floating-point

output. The subtraction case raises the potential for cancellation and hence is more complex

than the pure addition case [46]. The architecture shown in Figure 5.5a is the core datapath

of a baseline half-precision (FP16) floating-point subtractor computing the output mantissa.

The core datapath takes sorted mantissas Max and Min, along with an ExpDiff= |ea − eb|.

This architecture is easy to write and simple to verify. It consists of three main components:

alignment, subtraction and normalization. The baseline architecture essentially converts the

input mantissas to a 42-bit aligned integer representation, performs a 42-bit subtraction, then

normalizes using an LZC, truncating the resulting signal.

Floating-point addition operators have been well-studied in academia and industry, providing

optimized single-path and dual-path implementations. The dual-path architecture, also known

as the near-path/far-path optimization, is derived from the observation that no input fully

exercises the critical path of the baseline architecture [46]. The dual-path architecture inserts

a case-split using a positive constant c, taking the near-path for small ExpDiff values (ExpDiff

≤ c) and an alternative far-path for large ExpDiff values (ExpDiff > c). On the near-path,

close floating point values are subtracted yielding a small alignment shift, since ExpDiff is

representable in fewer bits. On the far-path, catastrophic cancellation can be avoided, reducing

the renormalization logic.

To explore alternative case-splitting constants c, a mux on the output of the baseline architec-

ture (Figure 5.5a) is manually inserted.

ExpDiff > c ? Out : Out (5.18)

Such a redundant case-split would be optimized away by most tools, but with ROVER’s

constraint-aware optimizations, ASSUME operators are propagated down each branch, triggering

a chain of branch specific optimizations that result in efficient dual-path implementations.

106 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

In Figure 5.6, ROVER is fed dual-path architectures for each value of c ∈ {1, 2, 4, 8}. ROVER’s

cost-model suggests that the optimal split uses c = 1, in agreement with computer arithmetic

literature [46]. Figure 5.5b presents the ROVER generated dual-path architecture for c = 1.

The design uses two small 12-bit subtractors, replacing the larger 42-bit subtractor in the

baseline architecture. To understand how ROVER generated the dual-path design, a description

of the rewrites ROVER applied to transform Figure 5.5a into Figure 5.5b is provided.

In a pre-processing pass, ROVER propagates ASSUME operators through the e-graph, duplicating

the datapath to create two separate near-path and far-path sub-e-graphs. On the near-path

ROVER constrains the ExpDiff ≤ 1, allowing the initial alignment shift in Figure 5.5a to be

shrunk, using the bitwidth reduction rewrite (with i = 1) that exploits the domain refinement

described in Section 5.1.3.

AJyK ⊆ [0, 2i − 1] ⇒ x ≫ y → x ≫ y[i− 1 : 0] (5.19)

Having reduced the shift, ROVER can then apply the “Alignment” rewrite given in Table 5.4,

with const equal to 31.

max(y) < 31 ⇒ (x ≪ 31) ≫ y → ((x ≪ max(y)) ≫ y) ≪ (31− max(y)),

where max(y) returns the maximum value of the signal y according to ROVER’s value range

analysis, AJyK. These rewrites lead ROVER to discover the following sub-expression, that

yields an opportunity to reduce a 42-bit subtraction to a 12-bit subtraction:

(Max ≪ 31)− ((Min ≪ 1 ≫ NearExpDiff) ≪ 30) →

(Max ≪ 1− (Min ≪ 1 ≫ NearExpDiff)) ≪ 30,

where NearExpDiff = ASSUME(ExpDiff,ExpDiff ≤ 1).

This shifted subtraction is passed into a normalization circuit (including an LZC). The constant

5.3. Results 107

shift and normalization order are swapped by ROVER, reducing the critical path.

(x ≪ 30) ≪ LZC(x ≪ 30) → (x ≪ LZC(x)) ≪ 30 (5.20)

This sequence of rewrites has essentially pulled the initial alignment shifts through the design

until they reach the output, where they meet the truncation shift. With a final rewrite these

constant shifts cancel out, resulting in the final shift by one shown in Figure 5.5b.

On the far-path, via ASSUME node propagation, ROVER constrains ExpDiff> 1. This fact is

propagated through the e-graph via the value range analysis, which leads to the automated

discovery that the leading zero count on this branch is less than two, since cancellation due to

subtraction is limited. This discovery allows ROVER to reduce the 42-bit LZC to an LZC on

the most-significant bit only, as in Figure 5.4. Simultaneously, ROVER deploys another shift

transformation.

(x ≪ y) ≫ 31 → ((x ≫ 31−max(y)) ≪ y) ≫ max(y)

In this example, y is the LZC output, therefore max(y) = 1. These transformations leave

ROVER with the following expression in the e-graph, where x30 and y30 denote truncation to

the least-significant 30 bits:

(x− y) ≫ 30 → (x ≫ 30)− (y ≫ 30)− (x30 < y30). (5.21)

In the floating-point subtraction context, the final term of the subtraction can be further

reduced by ROVER to an or reduction since x30 = (Max ≪ 31)30, which is zero. Whilst

rewrites including specific constant values have been shown, ROVER’s rewrites dynamically

adapt to arbitrary constant values.

The combination of rewrites applied to each branch by ROVER substantially reduces the critical

path delay, leading to the dual-path architecture shown in Figure 5.5b. The ROVER generated

architecture re-discovers optimizations typically implemented by hand by experienced hardware

engineers. As mentioned above, ROVER was able to automatically explore alternative case-

splitting constants which are synthesized in Figure 5.6. ROVER can also optimize the single-

108 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

MinMax ExpDiff

≪ 31 ≪ 31

≫

5

42

− 42

42

LZC≪
42

6

≫ 31

Out

42

10

Alignment

Subtraction

Renormalization

(a) Baseline architecture, using a 42-
bit subtraction.

ExpDiffMinMax

≪ 1 ≪ 1

≫ 1

11 11

12

− 12

12

LZC

≫ 1

≪
4

12

≫ 1

≪ 31

≫ 30

≫

OR

−

≫ 11

LZC≪

42
30

12
1

42

5

12

1

1

11

≫ 1
12

> 1

Out

1010

10

1

5

Near
Path

Far
Path

False True

(b) Dual-path optimized architecture, using two 12-bit
subtractors. Near-path uses a one bit alignment shift,
followed by a larger renormalization stage. Far-path
uses a 5-bit alignment shift and a single bit renormal-
ization.

Figure 5.5: Half-precision floating-point subtractor architectures. Input mantissas have the
implicit one appended. Edge labels represent bitwidths. The floating-point inputs are sorted,
such that Max ≥ (Min≫ExpDiff). In the optimization, input sorting and exponent difference
calculation blocks were omitted to focus on the core datapath.

path architecture, shown in Figure 5.5a, directly, generating the “Single-Path” implementation

plotted in Figure 5.6. To achieve this result, an additional “Special Case” rewrite was required

purely to aide the value range analysis.

x− (y ≫ z) → z > 0 ? x− (y ≫ z) : x− y (5.22)

This transformation treats z = 0 as a special case, helping ROVER’s value range analysis to

recognize some of the optimization opportunities that were utilized in the dual-path case. As

we can see in Figure 5.6, the dual-path architectures are considered superior by ROVER for

constants c ≤ 4.

The dual-path architecture is generated by ROVER in less than 10 seconds, growing from

an initial 100 node e-graph to an e-graph containing over 400 nodes. The majority of the

5.3. Results 109

32 34 36 38 40 42 44
950

1,000

1,050

1,100

1,150

1,200

1,250

1,300

1,350

∅

1

2

4

8

Delay

A
re
a

Dual Path
Single Path

Figure 5.6: ROVER optimized designs for different case-split values, the label above each point
represents the value on which the corresponding design case-splits. The area and delay values
are those calculated by ROVER’s cost models.

runtime is spent in the rewrite application and analysis phases. Figure 5.7 plots the area-delay

curves generated from synthesizing four different architectures. The baseline, two ROVER

generated single-path designs optimizing for minimal area and minimal delay, respectively,

and one ROVER generated dual-path design (Figure 5.5b). The results clearly show that the

ROVER generated dual-path architecture is superior, offering a 20% performance improvement

for a 3% area penalty, when compared against the baseline architecture optimized by logic

synthesis. In contrast, despite exhibiting significant architectural differences, the performance of

the two single-path designs and baseline design are very close. This implies that the commercial

synthesis tool is able to express most of the optimizations present in the ROVER generated

single-path designs. However, the commercial synthesis tool does not appear to be capable

of constraint-aware optimizations, the key component required to reproduce the dual-path

architecture.

5.3.2 Multi-Objective Optimization

Section 5.2.3 described an algorithm to extract a Pareto frontier of implementations, balancing

the area-delay trade-off. The value of such an approach is demonstrated via another case-study.

110 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

15

20

25

30

35

40

Delay (ns)

A
re
a
(µ
m

2
)

Baseline Single (Area) Single (Delay) Dual

Figure 5.7: Area-delay profiles for baseline FP16 Subtractor and three ROVER generated
implementations. Single (Area/Delay) are ROVER’s single-path designs optimizing for area or
delay, respectively. Dual represents the ROVER generated design shown in Figure 5.5b.

Consider a 2K-input floating-point dot product.

2ea1ma1 × 2eb1mb1 + · · ·+ 2eaKmaK × 2ebKmbK =

2ea1+eb1(ma1 ×mb1) + · · ·+ 2eaK+ebK (maK ×mbK)

The hardware implementation of this equation computes each product, producing K product

exponents (eai + ebi) and associated product mantissas (mai × mbi). To perform the final

accumulation, the hardware must determine the maximum exponent and compute an alignment

factor for each product. This corresponds to a maximum comparison tree followed by K

subtractions, as shown in Figure 5.8.

Feeding the baseline implementation into ROVER, it manipulates the mux tree structure, intro-

ducing additional subtraction and comparison operators, increasing the degree of speculation.

ROVER’s e-graph explores all degrees of parallelism available, leaving the extraction phase to

determine the optimal implementation based on the delay target. ASSUME node rewrites are

5.3. Results 111

e1 e2 e3 e4

> >

>

− − − −

e1 e2 e3 e4

Figure 5.8: Component from a floating-point dot product design, calculating the alignment
factor for each product. The hardware computes, for i = 1, 2, 3, 4, maxj ej − ei.

−55 −50 −45 −40 −35 −30 −25

40

60

80

100

120

140

160

180

Delay (% change)

A
re
a
(%

ch
an

ge
)

ROVER Model
Logic Synthesis

Figure 5.9: Pareto frontier of design costs from a 4-input maximum comparison tree based
on ROVER’s theoretical cost models and logic synthesis. The percentage change comparing
against the baseline implementation is plotted. Grey arrows connect results derived from the
same implementation, when not overlapping.

112 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

omitted here as the large number of correlated muxes in the design leads to excessive e-graph du-

plication. The correlation between the mux select signals and the conditional branches, means

that the live e-class analysis described in Section 5.1.1 does little to prevent the growth. Whilst

the example does not leverage ASSUME nodes it is still relevant to demonstrate how ROVER

explores the area-delay trade-off using the ILP model introduced in Section 5.2.3. ROVER

generates a 202 node e-graph during exploration, from which multiple implementations are

selected.

Given the max tree in Figure 5.8, ROVER generates 18 distinct delay constrained ILP problems,

which take 8 seconds to solve in total. These solutions yield a Pareto frontier containing four

distinct implementations. The minimum area architecture returned is unchanged from the input

shown in Figure 5.8. The estimates given by ROVER’s cost model for each implementation

are shown in Figure 5.9, using the input architecture as the baseline. The synthesis results

closely match the ROVER predicted trend, with one exception. For the implementation with

the highest performance, ROVER over-predicts the area penalty, since ROVER’s area model

fails to capture all the sharing opportunities exploited by logic synthesis.

5.3.3 Benchmark Selection

From the results in Table 5.5, only the “Media Kernel” is carried over from Chapter 3, however

the design is slightly modified here, replacing a variable clamping threshold with a constant

clamping threshold. The remaining benchmarks from Chapter 3 are not included as they do not

present any opportunities to exploit design constraints or the value range analysis computed by

ROVER. A number of new benchmarks are introduced that specifically provide opportunities

to exploit constraints on the data signals within the designs. The “Unorm8 to FP32”, “FP16 to

Unorm11” and “Normalization” benchmarks are provided by Intel, whilst the remaining three

benchmarks are standard datapath designs that are described within this paper. The approach

presented in Chapter 3 is used as an additional comparison point.

5
.3
.

R
esu

lts
113

Table 5.5: Logic synthesis results under a zero delay synthesis constraint. We compare the baseline, ROVER (Ch. 3), ROVER with only
value range analysis (+ VRA) and Constraint-Aware ROVER with value range analysis (+ VRA). Delay and area are measured in ps
and µm2, respectively. We bold the best result for each metric and report percentage improvement against the baseline. † denotes that
ROVER was run in two passes.

Benchmark
E-Graph Baseline ROVER (Ch. 3) ROVER + VRA Constraint-Aware ROVER + VRA

Initial Final Delay Area Delay Area Delay Area Delay Area

Media Kernel 40 645 288.6 192.2 267.5 199.2 241.4 156.7 241.4 -16.3% 156.7 -18.5%
Unorm8 to FP32 32 88 36.7 11.2 27.0 9.1 33.9 8.0 23.2 -36.8% 8.2 -26.5%
FP16 to Unorm11 44 71 54.3 12.8 54.5 15.0 31.5 3.0 31.5 -41.9% 3.0 -76.6%
FP16 Sub 79 416 170.9 36.2 176.5 34.7 180.9 37.7 136.1 -20.3% 37.5 +3.5%
FP8 Sub 86 405 68.9 13.6 68.9 13.6 68.6 11.7 58.3 -15.4% 14.1 +3.8%
Normalization 134 493 173.5 54.0 167.6 52.1 168.6 52.1 135.2 -22.0% 77.6 +43.5%
Max Tree (†) 43 960 173.7 33.9 89.8 51.2 89.8 51.2 78.1 -55.0% 56.4 +66.5%

114 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

5.3.4 Delay Optimization Evaluation

Having analyzed two case-studies, ROVER can now be used to demonstrate that constraint-

aware optimization is generally applicable. Table 5.5 reports synthesis results for a range of

benchmarks, where ROVER was used to optimize the designs. The commercial logic synthesis

tool with all datapath optimizations enabled, including datapath clustering, constant folding

and common sub-expression sharing [21] is used for a baseline (as in Chapter 3). To highlight

the benefits of both the value range analysis and the constraint-aware optimizations, an abla-

tion study compares versions of ROVER with and without these features. Across the entire

benchmark set, constraint-aware ROVER with value range analysis reduces critical path delay

by 30% on average combined with a 1% average circuit area reduction, when compared to the

baseline. Total circuit power is omitted, but this is generally closely correlated with circuit

area, seeing an average 1% increase. The ablation study demonstrates that, when compared

against Chapter 3, the value range analysis alone reduces delay by 3% on average, whilst adding

constraint-aware optimizations leads to a 20% average reduction. To understand the resulting

improvement, each benchmark is analyzed in detail.

As in Chapter 3 the “Media Kernel” is a kernel from the Intel media module, computing an

interpolation between four pixels then clamping the result. For particular constant clamping

thresholds, ROVER’s value range analysis proves that the threshold can never be breached,

allowing ROVER to remove the clamping. This example demonstrates the advantage of com-

bining rewriting with value range analysis. Before applying rewrites, ROVER’s value range

analysis fails to prove that the threshold cannot be breached. After several rewriting itera-

tions, the value range analysis is refined sufficiently to prove the desired property, triggering

the removal of the clamping. This optimization only relies on the value range analysis, so

constraint-aware ROVER produces an identical implementation.

The “Unorm8 to FP32” benchmark converts a value in a Unorm8 format to an FP32 format,

implementing round towards zero. The baseline implementation handles zero inputs on a

separate path. Constraint-aware ROVER exploits this to exclude zero from the input domain

of the alternative path, leading to a set of constraint-aware optimizations that reduce the

5.3. Results 115

critical path. The “FP16 to Unorm11” benchmark performs a reverse conversion, taking an

input in FP16 format, and converting it to a Unorm11 format. ROVER re-uses several of the

subtraction and rounding rewrites introduced in Section 5.3.1. A lack of data dependent muxes

means that constraint-aware optimization offers no further benefit.

Both 8-bit and 16-bit floating-point subtractors, based on the architecture described in Sec-

tion 5.3.1, benefit from the constraint-aware optimizations, with the FP8 benchmark showing a

slightly smaller advantage from the dual-path implementation. In both examples, circuit power

consumption increases since the dual-path architecture executes two computational paths in

parallel. The “Normalization” benchmark is a kernel from the Intel elementary function unit,

normalizing a floating-point value. As in the “FP Sub” benchmarks, a manually inserted case-

split is automatically optimized by ROVER, producing an efficient dual-path implementation.

The “Max Tree” was introduced in Section 5.3.2. Due to the large number of muxes in the

design, ASSUME node rewrites excessively duplicate the e-graph. To combat this ROVER is

applied in two passes. First ROVER establishes an efficient mux structure, and then, by

enabling the ASSUME nodes on a second pass, ROVER discovers resource sharing opportunities

via the absolute difference rewrite introduced in Section 5.2.2.

Section 5.1.1 described a live-class analysis and claimed that it limited the propagation of

ASSUME operators. To evaluate this, only the rewrites in Table 5.1 were applied to the “FP16

to Unorm11” benchmark. Using the live-class analysis to conditionally create and propagate

ASSUME operators, 48% fewer nodes are added to the e-graph at saturation.

The experiments were run on SLES 12 on modern Intel Xeon CPUs. Since the evaluation does

not claim runtime improvements when compared to alternative approaches, a single runtime

result is used that does not account for small run-to-run variations. Across the benchmark set,

ROVER ran for an average of 69 seconds, whilst the commercial logic synthesis tool ran for

between one and two minutes in each cases. The ROVER generated e-graphs were 11 times

larger than the initial e-graph, on average. The input benchmarks contained an average 65

lines of System Verilog. For several benchmarks the extraction phase dominated the runtime,

hitting the 120 second ILP timeout limit. Efficient e-graph extraction is the subject of a broader

116 Chapter 5. Automating Constraint-Aware Datapath Optimization using E-Graphs

community effort to which ROVER benchmarks are actively contributed.1

5.4 Summary

This chapter presented a theoretical framework for expressing constraint-aware optimizations

in an e-graph. A new ASSUME operator was introduced, for which a complete semantics was pro-

vided. This theoretical description allows e-graph users to exploit context that can be derived

directly from the programs they wish to optimize. Crucially, the chapter described an approach

to express sub-domain equivalences and a way to take advantage of the natural program anal-

ysis refinements generated by the ASSUME nodes. Applying the theoretical contributions to

ROVER demonstrated substantial gains in circuit performance across a set of Intel and open-

source benchmarks. Through a floating-point subtraction case-study, ROVER demonstrated

how constraint-aware optimization can be leveraged to re-discover efficient designs, previously

only implemented manually by expert designers. A second case-study highlighted how ROVER

can use a single e-graph to explore the area-delay trade-offs.

The techniques presented here represent a substantial leap in datapath circuit optimization

capabilities, as no other work has taken advantage of circuit context to match manual design

optimization. The next chapter will re-use key ideas behind the ASSUME operator, describing

how to exploit circuit context to reduce dynamic power consumption by avoiding redundant

computation.

1https://github.com/egraphs-good/extraction-gym

Chapter 6

Combining Power and Arithmetic

Optimization via E-Graph Rewriting

Throughout this thesis, the scope of ROVER has expanded to capture an increasing spectrum

of optimization capabilities. This chapter completes the PPA acronym, applying ROVER

to circuit power optimization. Power is a measurement of the energy per unit time used

to perform a given computation. The rise of custom accelerators presents the opportunity to

optimize arithmetic hardware designs for particular computations, allowing us to perform those

computations using less energy.

Whilst performance and area are relatively simple to estimate, power can only be estimated

accurately knowing the data values being operated upon, e.g. via representative workloads.

The majority of power estimation tools in the EDA industry are based on randomly generated

or real-world simulation stimuli [58, 59]. ROVER targets dynamic power consumption as that

is influenced heavily by RTL design. Leakage power is more heavily influenced by operating

voltage and cell selection, which is determined by logic synthesis. From a simulation of a circuit

design it is possible to infer bit-level switching activity, that is the frequency of transitions of

a bit from zero to one or one to zero. These switching activities can be translated into power

consumption estimates via a power model.

Encoding power optimizations such as clock gating and operand isolation as a set of local

117

118 Chapter 6. Combining Power and Arithmetic Optimization via E-Graph Rewriting

A
B
C

S

1

0
out

∗

Figure 6.1: An operand isolation opportunity. The input to the multiplier can be data gated
when the select signal is one, as shown by the red gate. The negated select signal, ∼ S is a
common input to an array of AND gates equal to the bitwidth of C.

rewrites allows them to be combined them with the existing arithmetic rewrites, facilitating

the exploration of new design spaces and the discovery of novel power efficient designs. An

example of the optimizations captured is given in Figure 6.1. By forcing one multiplier input to

zero when the computation is redundant the overall power consumed by the multiplier circuit

is reduced. The compact e-graph representation also offers advantages to power estimation,

via a computationally efficient simulation of design candidates based on the formal framework

for analysis presented in Chapter 4. ROVER is extended with power optimization capabilities

that allow the tool to customize an implementation based on representative workloads.

This chapter is organized as follows. Section 6.1 describes a set of RTL rewrites that encode

power optimizations in ROVER. Section 6.2 describes ROVER’s power model and how the

compact representation provided by the e-graph yields efficiency gains for RTL simulation.

Lastly, Section 6.3 demonstrates ROVER’s impact on power consumption on a set of Intel

provided and open-source benchmarks.

The work described in this chapter was published at ARITH in 2024 [140]. The chapter contains

the following novel contributions:

• a set of local equivalence preserving RTL rewrites capturing power-specific optimizations,

• an encoding of clock gating and operand isolation that exceeds current mux tree analysis,

• a computationally-efficient methodology to simulate a large set of design choices, lever-

aging the compact e-graph representation,

• an automated method for data-driven design.

6.1. Encoding Power Optimizations 119

Input
Verilog

Slang

JSON

ROVER Front-End

VeriLang

egg

E-Graph

Rewrite and Analyze

Extraction

VeriLang

ROVER Back-End

Opt.
Verilog

Proof Production

VeriLang

ROVER Back End

Intermediate
Verilog 1

Intermediate
Verilog 2

· · · Intermediate
Verilog n

EC EC EC

Simulation

Switching
Activity

Input
Stimuli

Figure 6.2: ROVER’s power optimization tool flow. In addition to an input Verilog design, users
provide input stimuli via simulation data or switching activity statistics. ROVER consumes this
in a simulation flow, providing the switching activities from which ROVER estimates circuit
power consumption.

6.1 Encoding Power Optimizations

Figure 6.2 visualizes the extensions that allow ROVER to optimize a design to reduce power

consumption. As in previous chapters, ROVER’s front-end converts an input Verilog design

to VeriLang, which egg uses to initialize an e-graph. ROVER then applies a set of power

optimization rewrites, described in Sections 6.1.1 and 6.1.2, to the e-graph, constructing a set

of implementation candidates.

When VeriLang was introduced in Chapter 3, its semantics were defined as operating over

Boolean values. In this chapter, the semantics of VeriLang are modified to consider input

variables as streams of Boolean data, such that a new data point enters the module every clock

cycle. This work assumes a single clock domain, for simplicity. Now considering streams of

data, it means that every intermediate signal created in the e-graph has an associated stream.

The semantics of combinational operators are such that each clock cycle the new data points

are used to generate a new output within the same cycle.

Two new VeriLang operators are included, REG, which describes a register with an enable signal,

and TREG, representing a transparent register. The corresponding circuits are shown in Fig-

ure 6.3. Given input a and enable signal en with associated data streams ai and eni, REG(a, en)

120 Chapter 6. Combining Power and Arithmetic Optimization via E-Graph Rewriting

D

en

0

1
Q

(a) A transparent register (TREG).

D

en

0

1
Q

(b) An enabled register (REG).

Figure 6.3: Circuit diagrams of the TREG and REG operators.

and TREG(a, en) have the following semantics, which assume that a register is initialized to zero:

REG(ai, eni) =







0 , if i == 0

ai−1 , if eni−1

REG(ai−1, eni−1) , otherwise.

(6.1)

TREG(ai, eni) =







ai , if eni

TREG(ai−1, eni−1) , elif i > 0

0 , otherwise

(6.2)

6.1.1 Data Gating

This section describes a set of rewrites that encode the operand isolation optimizations described

in Section 2.1.3. A key challenge in expressing operand isolation via local rewrites, is that having

identified a redundant computation from a functional perspective the circuit does not care what

value is produced under certain conditions. Therefore, from a functional perspective, the circuit

can generate any value we choose. However, these chosen values have a significant impact upon

power consumption.

Before progressing, it is necessary to define some notation. Let wx denote the bitwidth of a

bitvector variable x and let wo denote the output bitwidth of an operation. Use {w{S}} to

denote w-fold replication of a bitvector S, which will usually be a single bit. Lastly, use ∼ S

to denote the bitwise logical complement of a bitvector S.

6.1. Encoding Power Optimizations 121

Table 6.1: A set of RTL rewrites encoding operand isolation and clock gating optimizations.
We define four sets of operators such that op is any arithmetic or logical VeriLang operator,
op1 ∈ {∗,≪,≫,+,−}, op2 ∈ op1 \ {+,−} and op3 is any Boolean operator. We use wa to
denote the bitwidth of a bitvector a, wo to denote the output bitwidth of an operation.

Group Name Left-Hand Side Right-Hand Side

Data Gate

Gate Left s ? b : c s ? (b& {wb{s}}) : c

Gate Right s ? b : c s ? b : (c& {wc{∼ s}})
Propagate Mask (a op1 b)& {wo{s}} (a& {wa{s}}) op1 (b& {wb{s}})
Propagate Mask Left (a op2 b)& {wo{s}} (a& {wa{s}}) op2 b

Propagate Mux Mask (s1 ? a : b)& {wo{s2}} s1 ? (a& {wa{s2}}) : (b& {wb{s2}})
Propagate Mux Mask Right (s1 ? a : b)& {wo{s2}} s1&s2 ? a : (b& {wb{s2}})
Propagate Mux Mask Left (s1 ? a : b)& {wo{s2}} s1 ∥ ∼ s2 ? (a& {wa{s2}}) : b

Combine Masks (a& {wa{s1}})& {wa{s2}} a& {wa{s1&s2}}

Transparent
Registers

Transp Reg Left s ? b : c s ? TREG(b, s) : c

Transp Reg Right s ? b : c s ? b : TREG(c,∼ s)

Transp Reg Mask a& {wa{s}} TREG(a, s)& {wa{s}}
Transp Reg Saturate a ∥ {wa{s}} TREG(a,∼ s) ∥ {wa{s}}
Transp Reg Reg REG(a, en) REG (TREG(a, en), en)

Propagate TREG(a op b, s) TREG(a, s) op TREG(b, s)

Propagate Mux TREG(s1 ? a : b, s2) TREG(s1, s2) ? TREG(a, s2) : TREG(b, s2)

Combine Transp Reg TREG(TREG(a, s1), s2) TREG(a, s1 & s2)

Clock Gate
& Retime

Retime Boolean REG(a, en) op3 REG(b, en) REG(a op3 b, en)

Clock Gate Reg TREG(REG(a, en), REG(b, en)) REG(a, en& b)

In one approach to perform operand isolation data gating can be applied to each branch of a

mux operator. Data gating creates a mask by duplicating a select signal and applies a bitwise

AND operation. This rewrite explicitly zeroes redundant outputs. The first group in Table 6.1

contains rewrites to create initial data gating operations. Two “Gate” rewrites are included

as it may be preferable to data gate only the true branch, only the false branch or both, by

applying “Gate Left” and “Gate Right” in sequence. The rewrite from (6.3) to (6.4) illustrates

the creation of a mask and data gating of a mux branch, in order to avoid dynamic power in

the multiplier. Table 6.1 next describes how the data gating operations are propagated over

arithmetic operations, since these operators typically account for the largest power consumption

in datapath circuits. These “Propagate” rewrites incrementally gate larger sub-circuits. For

a subset of operators, e.g. multiplication, it is equivalent to data gate a single operand, as

122 Chapter 6. Combining Power and Arithmetic Optimization via E-Graph Rewriting

illustrated in (6.4) and (6.5).

S ? A : (C ∗B) → (Gate Right) (6.3)

S ? A : (C ∗B)& {wo{∼ S}} →(Propagate Left) (6.4)

S ? A : (C & {wc{∼ S}}) ∗B (6.5)

For such operators, gating just one operand may use half the number of gates but achieve the

majority of the power saving when compared to gating both inputs. For example, when both

operands are switching at the same frequency, gating just one multiplier operand, as shown in

Figure 6.1, yields 91% of the power saving obtained by gating both inputs.

The impact of data gating redundant operations depends on the wider module context. Ex-

ploring data gating via e-graph rewriting allows ROVER to retain a set of gated and ungated

designs, deferring architecture selection and evaluation to the extraction phase. For example,

in

(s ? f(a) : b) + g(f(a)), (6.6)

the computation of f(a) appears redundant when s is zero, however f(a) is always in the

computation of g(f(a)), thus there is no value in a gated version.

Applying these rewrites to a nested mux structure, ROVER naturally generates nested gating

operations which are combined via classical Boolean rewriting. Such an approach constructs

observability don’t care conditions [54] that are not present in the original design. These newly

created conditions can be simplified using Boolean rewriting.

In addition to the rewrites described in Table 6.1, ROVER deploys the arithmetic and area

optimization rewrites described in Chapters 3 and 5, that crucially encode downstream logic

synthesis optimizations. ROVER also includes standard Boolean rewrites for optimizing logical

expressions. Exploring these transformations in parallel, ROVER discovers architectures that

provide an efficient area-power trade-off.

6.1. Encoding Power Optimizations 123

6.1.2 Clock Gating

The previous section described how data gating rewrites can encode operand isolation. This

section shall describe a set of local equivalence preserving rewrites that create transparent

registers providing an alternative way to achieve operand isolation.

The second group in Table 6.1 contains a set of rewrites, similar to the first group, that encode

the creation and propagation of TREG operators. ROVER improves upon approaches based on

mux tree analysis by including the “Transp Reg Mask/Saturate” rewrites that detect redundant

computation. ROVER also creates transparent registers from register enable signals, since

disabled registers correspond to redundant computation. Similar to the data gating case, the

“Combine Transp Reg” rewrite allows ROVER to construct and possibly simplify complex

observability don’t care signals.

The final group in Table 6.1 describes how ROVER encodes clock gating via local rewrites.

When the TREG operator meets the output of a register, it represents an opportunity to refine

the enable condition of the register, eliminating the overhead of the transparent register. It is

possible to prove the equivalence of

Li = TREG(REG(ai, eni), REG(bi, eni)) and

Ri = REG(ai, eni&bi)

for all clock cycles i via induction. First, let

pi = REG(ai, eni) and qi = REG(bi, eni).

124 Chapter 6. Combining Power and Arithmetic Optimization via E-Graph Rewriting

Suppose ∀i ≤ k Li = Ri, then if enk = 1:

qk+1 = bk pk+1 = ak

Lk+1 = qk+1 ? pk+1 : Lk

= bk ? ak : Lk

Then, since enk = 1 and Rk = Lk,

Rk+1 = enk&bk ? ak : Rk

= bk ? ak : Rk = Lk+1

Now if enk = 0, then Rk+1 = Rk = Lk and

qk+1 = qk pk+1 = pk

Lk+1 = qk ? pk : Lk

qk = 1 ⇒ Lk = qk ? pk : Lk−1 = pk

Therefore Lk+1 = Lk = Rk+1 and hence Rk+1 = Lk+1 for all values of enk. Under the zero

register initialization assumption it is trivial to prove L0 = R0.

A key requirement of the “Clock Gate Reg” rewrite, is that the observability don’t care condition

be available in the previous clock cycle. This constraint ensures that the register is disabled

for the clock cycle corresponding to the redundant computation. In certain cases, it may be

necessary to move operations into earlier clock cycles to ensure the gating signal is available

in the correct cycle. To transfer operations between clock cycles limited retiming of Boolean

operators is implemented.

As described in Figure 6.2, ROVER applies all rewrites described to grow an e-graph of equiv-

alent implementations until a user defined limit or saturation is reached. The final e-graph

contains designs with different combinations of gating and arithmetic optimizations. Deter-

6.2. Power Estimation and Extraction 125

mining which combination of optimizations produce the most power efficient design is left to

extraction, which is described next.

6.2 Power Estimation and Extraction

To accurately model per implementation power consumption, ROVER simulates the entire e-

graph based on user configured input stimuli as shown in Figure 6.2. The user configured input

stimuli provide, for every module input, a sequence of bitvectors that are fed one per clock

cycle. E-graph simulation provides switching activities for all the internal signals of all the

candidates, which are fed into the power model, described in Section 6.2.2. The power model is

used by ROVER to determine the optimal implementation, producing a VeriLang expression.

The ROVER back-end and proof production flows are as described in previous chapters.

6.2.1 Simulation

In order to analyze power consumption, ROVER must first simulate all designs within the

e-graph based on a set of stimuli. ROVER takes an additional input configuration file that

provides simulation stimuli or sets the switching activity for each module input. If the user only

defines a switching activity and simulation length, ROVER automatically generates simulation

stimuli for all module inputs using an algorithm, described in Figure 6.4, that randomly toggles

each bit in a bitvector according to the configured toggle rate.

Since all nodes in a given e-class are functionally equivalent, ROVER simulates one node per

e-class to obtain simulation data for the entire class. In the context of the formal analysis frame-

work described in Chapter 4, analyzing any node in an e-class yields the same abstraction, so

the combination is trivial and not necessary. This observation provides a significant compu-

tational efficiency gain, as the complexity of simulating all designs in the e-graph scales with

the number of e-classes. Meanwhile, the number of distinct designs contained in the e-graph

can grow exponentially with the number of classes [72], as shown for the example of Figure 6.1

126 Chapter 6. Combining Power and Arithmetic Optimization via E-Graph Rewriting

Random i n i t i a l b i t
l a s t b i t = rand int (0 , 1)
s t imu l i = vec ! [l a s t b i t]
th r e sho ld = L ∗ sw i t c h i n g a c t i v i t y
while s t imu l i . len () < L :

random in t e g e r in range [0 ,L−1]
r = rand int (0 , L−1)
i f r < th r e sho ld : # t r an s i t i o n

l a s t b i t = not l a s t b i t
s t imu l i . push (l a s t b i t)

Figure 6.4: An algorithm to generate simulation stimuli of length L for an individual bit at a
given switching activity ∈ [0, 1].

in Figure 6.5. In this example, the number of e-classes grows by a factor of four whilst the

number of designs grows by a factor of 1000. Observe that the number of e-classes in Figure 6.5

does not grow monotonically. In later rewriting iterations e-classes get merged due to proof of

equivalence generated by ROVER reducing the number of classes. For example, consider an

e-graph containing two expressions, f(a+ b) and f(b+ a), upon application of commutativity

a + b is proven equivalent to b + a. By congruence, the e-graph now merges the two e-classes

containing f(a+ b) and f(b+a) into a single e-class. Note that, whilst a single node evaluation

can be shared across the e-class, each node in the e-class may require more or less power to

produce that same value. For example, x + x and x ≪ 1 are functionally equivalent but may

consume significantly different power. It is this difference our extraction is designed to estimate

and exploit.

From the e-class simulation data, ROVER calculates an average switching activity across all

the bits of the output word of that e-class. For example, for a 3-bit word, switching activities

of 0.25 for bit 0, 0.5 for bit 1 and 0.75 for bit 2 would average to 0.5 across the entire word.

Note that the average switching activity is identical for all nodes within an e-class because they

produce identical values.

6.2. Power Estimation and Extraction 127

10 15 20 25 30 35 40 45

0

200

400

600

800

1,000

Number of E-Classes

N
u
m
b
er

of
D
es
ig
n
s

Figure 6.5: The number of designs vs. the number of e-classes after each iteration of rewriting
the design in Figure 6.1. Simulation complexity scales with the number of e-classes but evaluates
all designs in the e-graph.

6.2.2 Operator Power Model

The purpose of the power model is to order the candidate implementations so that ROVER can

select the most power efficient design. The e-graph simulation provides us with an average

word-level switching activity for each e-class.

It is a known challenge to accurately estimate operator power consumption based on a word-

level RTL implementation as it is highly dependent on downstream transformations and library

selection [141]. Chapter 3 described how ROVER encodes certain high-level datapath optimiza-

tions, such as arithmetic clustering [21], in the e-graph. To model power, ROVER combines the

theoretical circuit area model from Chapter 3 with the simulated switching activity statistics

to estimate the number of two-input gates toggling per clock cycle. For each node n in a given

e-class c with child e-classes c0, · · · , ck−1, compute a power estimate, P (n).

P (n) = A(n)× 1

k + 1

(

Tc +
k−1∑

i=0

Tci

)

(6.7)

where, A(n) is the theoretical gate area model from Chapter 3, and Tci and Tc are the operator’s

128 Chapter 6. Combining Power and Arithmetic Optimization via E-Graph Rewriting

input and output toggle frequencies, respectively. The power model assigns an equal weight to

input and output switching activities to approximate the proportion of the gates which tran-

sition each cycle. The model does not capture wire power consumption. Section 6.3 evaluates

how accurately ROVER’s model is able to estimate power consumption.

Once again, to correctly account for common sub-expressions, extraction is formulated as an

ILP problem, replacing the objective function in the ILP problem described in Section 3.3.2,

with the following objective:
∑

n∈N

xn × P (n). (6.8)

The rest of the constraints are unmodified to ensure that a valid implementation computing all

the module outputs is extracted.

6.3 Results

For each design, ROVER takes the original System Verilog design, which does not contain

any existing power optimizations, along with a JSON file that specifies the input switching

activities. ROVER is run twice generating an area optimized and a power optimized design

in System Verilog along with estimates of the power reduction according to ROVER’s power

model. Using a commercial logic synthesis tool targeting a TSMC 5nm cell library, the original

and ROVER generated designs are synthesized at a range of delay targets to mitigate the impact

of logic synthesis noise that was observed in Section 3.6. The commercial tool is provided with

the same switching activity configuration as given to ROVER. Table 6.2, shows the average

circuit area and average total power consumption (including leakage power) reported by the

synthesis tool across the range of delay targets. The commercial synthesis tool incorporates

a power analysis and optimization tool, which provides relevant power estimates based on the

switching activities configured. To ensure the correctness, the cycle-accurate equivalence of the

original and ROVER generated designs is verified using a commercial formal EC tool.

6
.3
.

R
esu

lts
129

Table 6.2: Logic synthesis results comparing the average total power consumption (µW) and average area (µm2) across several delay
targets. We compare the baseline, against two implementations generated by ROVER, one targeting area optimization and one targeting
power optimization. We bold the best result for each metric. We report the relative change vs the baseline and include the number of
nodes in the initial e-graph for each benchmark.

Source Benchmark Nodes
Baseline Area Optimized Power Optimized

Area Power Area Power Area Power

Intel
Comb. Mux Add Tree 20 32.9 98.2 32.8 -0.4% 98.8 +0.5% 31.0 -7.4% 83.2 -15.5%
Address Generation 22 58.5 421.9 57.1 -0.2% 419.2 -0.6% 57.2 +2.2% 301.2 -28.7%
Weight Calculation 81 51.6 1141.4 46.4 -10.2% 1072.3 -6.1% 53.3 +3.2% 871.5 -23.7%

Open-Source

Pipe. Mux Add Tree 23 38.6 852.3 38.6 0.0% 852.3 0.0% 44.1 +14.9% 615.3 -27.2%
Dual Op ALU 17 6.5 186.9 6.5 0.0% 186.9 0.0% 7.5 +15.1% 146.8 -21.3%
Sequential Reg 13 12.4 579.6 12.4 0.0% 579.6 0.0% 12.8 +2.9% 383.0 -33.9%
Dual-Path FP Sub 62 27.8 1097.1 27.8 0.0% 1097.1 0.0% 29.0 +3.5% 929.4 -14.9%

130 Chapter 6. Combining Power and Arithmetic Optimization via E-Graph Rewriting

6.3.1 Benchmark Selection

ROVER’s impact on dynamic power consumption is evaluated on two sets of benchmarks as

shown in Table 6.2. Two benchmarks are carried over from previous chapters, that instantiate

a pipeline offering power optimization opportunities. The “Weight Calculation” benchmark,

introduced in Chapter 3, is a production two-stage pipelined design computing pixel offsets in

the graphics pipeline. The “Dual-Path FP Sub”, is a pipelined version of the floating point

subtractor with a near-/far-path split that ROVER generated. The newly introduced bench-

marks are taken from internal Intel low power training materials or existing power optimization

literature to to aid comparison with prior work. As in Chapter 5, the approach presented in

Chapter 3 is used as an additional comparison point.

The “Combinational Mux Add Tree”, is taken from Intel low power training materials and

comprises three adders and three muxes. The example demonstrates how the dataflow graph

can be rearranged to move particularly high toggling signals towards the outputs, reducing

toggling in the rearranged circuit. The second benchmark, “Address Generation”, is a snippet

from production code, which is used as an example of how to perform power optimization in

the training materials. It consists of two adders, a multiplier and a pair of muxes.

The second set of benchmarks are taken from prior publications [55, 54, 138, 60]. The “Pipelined

Mux Add Tree” [54] is similar to the “Combinational Mux Add Tree” but introduces a distinct

pipelined structure. It consists of two adders, three muxes and a pair of registers. The “Dual

Op ALU” design [55] can optionally perform either a shift or addition. Next, the “Sequential

Reg” benchmark is used in the PowerPro white paper to demonstrate that tool’s sequential

clock gating capabilities. It is a combination of registers and a mux.

6.3.2 Dynamic Power Reduction

Table 6.2 compares total power and area results for each of the benchmarks before and after

ROVER optimization. ROVER reduces total power consumption by up to 33.9% and 23.6% on

average at the expense of an average 5.0% increase in circuit area. In power constrained

6.3. Results 131

designs this is likely a favorable tradeoff, especially given the area overhead imposed by previous

solutions. This will be discussed in the subsequent evaluation. The reported power reduction

is for a representative set of switching activity configurations. The area optimized designs do

not demonstrate the same power reduction but show some limited area improvements. For

several designs the area optimization could not find any improvement, returning the baseline

implementation. Whilst ROVER only models dynamic power, the evaluation is based on total

power, including leakage power.

The benefit of exploring arithmetic, area and power in tandem, is highlighted through a deeper

analysis of an open-source benchmark. Figure 6.7 shows the circuits corresponding to the

baseline “Pipelined Mux Add Tree”, the design proposed in [54] and the ROVER generated

version. The optimizations proposed in [54] add transparent registers to both adder inputs,

as this work only added operators. Meanwhile, ROVER performs an entirely different opti-

mization, re-ordering the dataflow graph to push the adders towards the output of the circuit.

The ROVER generated design contains a three input adder, which, thanks to ROVER’s com-

prehension of logic synthesis optimizations, is recognized as only a single carry-save adder.

ROVER then inserts area efficient data gating on the adder inputs to save power. Synthesizing

the design proposed in [54], the ROVER generated architecture is strictly better, consuming

11% less power within 17% less area, as shown in Figure 6.6.

For the “Combinational Mux Add Tree” ROVER once again re-orders the mux tree converting

three separate adders to one single adder taking four inputs. This differs from the solution

proposed in the Intel training materials. ROVER’s design reduces both power and area by 10%

when compared to the design proposed in the training materials. In the “Address Generation”

benchmark, ROVER deploys data gating as recommended by the training material, but also

an optimization to combine two adders into one three input adder. This area optimization

offsets the overhead of the gating operators, leading to only a 2.2% increase in area. For

the “Dual Op ALU” and “Sequential Reg” benchmarks, ROVER is able to rediscover the

optimizations proposed in [55] and [60], demonstrating ROVER’s generalization of prior work.

Lastly, ROVER recognizes the distinct computational paths in the “Dual-Path FP Sub” and

inserts the appropriate clock gating for each path.

132 Chapter 6. Combining Power and Arithmetic Optimization via E-Graph Rewriting

0.2 0.22 0.24 0.26 0.28 0.3

0.5

0.6

0.7

0.8

0.9

1

1.1

Delay (ns)

P
ow

er
(m

W
)

Baseline
ROVER
Manual

Figure 6.6: “Pipelined Mux Add Tree” delay-power profiles for the baseline, ROVER power
optimized and manually optimized designs.

A

B

x y

C

D

E

F

S0

S1

S2 G0

G1

+ +

(a) Baseline design (black). In [54] the authors
add the transparent registers (red), where x =
(∼ S2&G0)∥(S0& ∼ S1&G1) and y = G1.

A

B

C

D

E

zw

F

S0

S1

S2

G0

G1

+

+

(b) ROVER generated design. ROVER rear-
ranged the mux tree and added data gating
(red), where w =∼ S2&G0 and z = G1& ∼
S1&S0.

Figure 6.7: Circuit diagrams of the “Pipelined Mux Add Tree” benchmark with power opti-
mizations from prior work and from ROVER.

6.3. Results 133

The experiments were run on SLES 12 on modern Intel Xeon CPUs. Since the evaluation does

not claim runtime improvements when compared to alternative approaches, a single runtime

result is used that does not account for small run-to-run variations. For all but two benchmarks

ROVER ran in less than 10 seconds, taking only a few seconds for the majority. For the

“Address Generation” and “Weight Calculation” benchmarks ROVER ran for 130 seconds

and 160 seconds, respectively. These long running cases were dominated by the ILP solver.

Comparing the reduction in power consumption predicted by ROVER’s model against the

actual impact reported by logic synthesis, the model provides a relevant estimate of the power

reduction for a group of five benchmarks, within 14 percentage points of the actual. However,

for the “Combinational Mux Add Tree” and “Address Generation” the model overestimates the

improvement in power consumption by around 45 percentage points. This can be attributed to

two causes. First, for both benchmarks, the area model predicted an area reduction that was

not realized. Second, the power model uses only a simple linear relationship between operator

power and toggle frequencies, not capturing the relative impact of inputs switching on different

operands.

6.3.3 Data Dependent Design

To demonstrate how ROVER is capable of tailoring the implementation to the computation,

the switching activities of mux select and register enable signals are modified and ROVER’s

design choices are studied. Consider the “Pipelined Mux Add Tree” as shown in Figure 6.7.

In Table 6.3, four different switching activity configurations are given to ROVER and the as-

sociated design choices are highlighted, using different colors to denote distinct optimizations.

Given Cfg. 1, ROVER elects to insert data gating using the S0, S1, S2 and G1 signals, as indi-

cated by the green cells. Given Cfg. 3, where the switching activity for all signals increases,

ROVER instead elects to insert a single transparent register, as indicated by the purple cell.

In Cfg. 4, ROVER uses the G0 signal to data gate (green), which was not see in other configu-

rations. The final columns show how the power benefit of ROVER’s optimizations varies with

switching activities.

134 Chapter 6. Combining Power and Arithmetic Optimization via E-Graph Rewriting

Table 6.3: Each row represents a different switching activity configuration (Cfg.) for the mux
select and register enable signals in the “Pipelined Mux Add Tree” (Figure 6.7a). For each Cfg.,
if ROVER inserted a data gate using one of these signals, the corresponding cell is colored green,
whilst if ROVER inserted a transparent register, the corresponding cell is colored purple.

Muxes Registers Total Power (mW)

Cfg. S0 S1 S2 G0 G1 Baseline ROVER

1 0.1 0.1 0.1 0.1 0.1 1.09 0.76 (-30%)

2 0.1 0.1 0.1 0.8 0.8 1.09 0.95 (-14%)

3 0.8 0.8 0.8 0.8 0.8 1.30 1.15 (-11%)

4 0.8 0.8 0.8 0.1 0.1 1.29 1.03 (-20%)

6.4 Summary

This chapter completed the PPA axes, describing how to encode power optimizations, such

as operand isolation and clock gating, as local equivalence preserving rewrites over streams

of data. By phrasing power reduction as a rewrite problem it can be combined with existing

arithmetic rewrites to explore both power and area in tandem, using ROVER. The e-graph

representation of design candidates enabled efficient simulation of many functionally equivalent

implementations as only one node from each class needs to be simulated. Optimizing a set of

benchmarks using ROVER demonstrated a 23.6% reduction in total average power consumption

for just an average circuit area increase of 5.0%. These results highlighted the importance of

ROVER’s understanding of downstream logic synthesis optimizations, leading to designs not

seen in prior work.

This chapter concludes our work on ROVER and its application to datapath circuit optimiza-

tion. In the final technical chapter, the focus shifts to the datapath circuit verification challenge.

In particular, we will see that an effective optimization engine can, with some modification,

provide the foundations for an equally effective verification engine.

Chapter 7

Formal Verification and Bug Fixing via

E-Graph Rewriting

The previous chapters have primarily focused on datapath optimization, measuring improve-

ments in PPA metrics. In every case, there was an associated verification challenge, namely,

using trusted EC tools to prove that ROVER has not modified the functional behavior of the

circuit. The same challenge remains when a human design engineer provides a new implemen-

tation or optimizes an existing circuit description in RTL. ROVER resolved this challenge by

automatically decomposing the verification problem into a sequence of simpler sub-problems.

For the human design engineer, producing and, even worse, maintaining such a proof decom-

position is time consuming and error prone. Compounding this problem, the design is typically

passed on to a verification engineer, who is tasked with verifying the implementation. Intention-

ally, the verification engineer has little knowledge of how the design works, making their task

very difficult should their verification tools fail to converge out-of-the-box. One objective in this

chapter is to provide verification engineers with a verification assistant capable of automatically

decomposing an equivalence checking problem into a sequence of simpler sub-problems.

As a secondary objective, this chapter addresses the datapath debugging challenge. As de-

scribed in Section 2.2, when two designs are not equivalent, existing verification tools return a

single counter-example. From this counter-example, an RTL engineer may be able to isolate the

135

136 Chapter 7. Formal Verification and Bug Fixing via E-Graph Rewriting

source of the bug, but the tools provide no guidance on where the bug may be or how to fix it.

An extension of the existing RTL rewriting framework provides a tool capable of automatically

generating a minimal fix to the implementation design, for relatively simple bugs.

To motivate the first objective, Figures 7.1a and 7.1b show functionally equivalent specification

and implementation designs, written in Verilog. Despite commercial tools orchestrating a suite

of solver technologies [86], including SAT, SMT and BDDs, several industrial EC tools return

an inconclusive result. By manually decomposing the problem, it is possible to aide these tools

in reaching convergence. Alongside the Verilog is a simplified SMT encoding in the theory

of bitvectors [142]. In this representation, it is necessary to explicitly zero extend operands

because the bitvector theory operators are only defined for uniform bitwidth operands. Once

again, leading SMT solvers, CVC5 [89] and Z3 [90] are unable to solve the simplified encoding,

even when given hours of computation time.

Certain limitations of existing EC tools are described in an overview of the technology behind

Synopsys’ industry leading Datapath Validation (DPV) tool [86]. DPV orchestrates a suite of

techniques and solvers to prove the equivalence of input designs. One of these techniques is

a set of rewrite engines. In [86], the authors state that certain rewrite sets “are only applied

selectively” or their application “can be counter-productive”. As a result these rewrite engines

are heuristic and may not explore the required space. Such a description suggests that an

e-graph approach may yield more reliable results.

To tackle objective one, the underlying e-graph-based RTL rewriting framework is modified to

produce a formal verification assistant, called ROVERIFY. Intuitively, instead of initializing

the e-graph using a single design, ROVERIFY starts with an e-graph representing two designs

that are to be proven equivalent. Applying rewrites to the e-graph simultaneously transforms

the two designs such that they converge to some (unknown) intermediate design. The approach

differs from ROVER primarily in the e-graph initialization and extraction stages. The proposed

verification assistant is able to exceed the capabilities of the industrial state of the art, reduce

verification runtimes and decrease the complexity of the EC problem.

The approach taken here is similar to that of Stepp, Tate and Lerner, who initially developed an

137

module spec (A,B,M,N,O) ;
input [1 5 : 0] A, B;
input [3 : 0] M, N;
output [6 2 : 0] O;
wire [3 0 : 0] D;
wire [3 0 : 0] E ;

assign D = A << M;
assign E = B << N;
assign O = D ∗ E;

endmodule

(a) Specification design.

module impl (A,B,M,N,O) ;
input [1 5 : 0] A, B;
input [3 : 0] M, N;
output [6 2 : 0] O;
wire [3 1 : 0] C;
wire [4 : 0] P ;

assign C = A ∗ B;
assign P = M + N;
assign O = C << P;

endmodule

(b) Implementation design.

(set−l o g i c QF BV)
(dec la re−fun A () (BitVec 16))
(dec la re−fun B () (BitVec 16))
(dec la re−fun M () (BitVec 4))
(dec la re−fun N () (BitVec 4))

(dec la re−fun spec () (BitVec 16))
(dec la re−fun impl () (BitVec 16))

(dec la re−fun z e r o s 12 () (BitVec 12))
(a s s e r t (= ze r o s 12 #b000000000000))

(a s s e r t (= spec (bvmul (bvshl A (concat z e r o s 12 M))
(bvshl B (concat z e r o s 12 N)))))

(a s s e r t (= impl (bvshl (bvmul A B)
(bvadd (concat z e r o s 12 M) (concat z e r o s 12 N)))))

(a s s e r t (not (= spec impl)))
(check−sa t)

(c) SMT bitvector theory encoding of equivalence between spec and implementation.

Figure 7.1: A motivational example, where existing EC tools fail to prove the equivalence of
these two designs. The simplified SMT encoding in the theory of bitvectors only compares the
least significant 16-bits of the outputs. A complete encoding is shown in Appendix C.

138 Chapter 7. Formal Verification and Bug Fixing via E-Graph Rewriting

e-graph based LLVM optimizer [14], and later modified it to perform translation validation [143].

The approach here differs from this previous work in that ROVERIFY validates numerically

intense optimizations at a lower abstraction level often performed by a human rather than a

compiler. The approach presented is sound, as each intermediate step is checked using a trusted

EC tool.

For objective two, the framework is further modified to produce ROVERIFIX, a tool that

automatically proposes minimal fixes to a buggy implementation design. Again, the e-graph

initialization is adjusted such that the specification design gets rewritten to close the gap

between the two designs. The implementation is not rewritten since the aim is to propose the

fix with the minimal modification to the implementation. This can be phrased as finding the

nearest design that is functionally equivalent to the specification. ROVERIFIX is currently

able to propose relatively simple fixes for designs that have undergone minor modifications.

This chapter is organized as follows. First, Section 7.1 describes how word-level e-graphs can

be applied to produce a verification assistant, ROVERIFY. Section 7.2 applies ROVERIFY

to the motivational example shown in Figure 7.1. Section 7.3 describes ROVERIFIX and

applies it to a common error made in RTL design. Finally, Section 7.4 presents results on

a set of benchmarks demonstrating overall verification runtime improvements when deploying

ROVERIFY.

The work described in this chapter was published at FMCAD in 2023 [144]. This chapter

contains the following novel contributions:

• a word-level e-graph framework that composes a set of sub-problems from local rewrites

to assist FV tools,

• an e-graph extraction method minimizing the ‘distance’ between two designs,

• test cases showing an enhancement in capabilities over industrial tools, reducing the need

for manual FV effort.

7.1. ROVERIFY: A Formal Verification Assistant 139

Spec

Front-End

VeriLang

Impl

Front-End

VeriLang

egg

E-Graph

Rewrite

Analysis

Extraction &

Proof Production

VeriLang
Back-End

I∗

S∗

I1 I2 · · · Im

EC EC EC

S1 S2 · · · Sn

EC EC EC

EC

Figure 7.2: Flow diagram for the verification assistant, taking a specification, S, and imple-
mentation circuit design, I, in (System) Verilog. The designs are parsed and an e-graph is
constructed. From the rewritten e-graph, two designs S∗ and I∗ are extracted along with in-
termediate designs forming a verification waterfall.

7.1 ROVERIFY: A Formal Verification Assistant

This section tackles the following problem, given two RTL designs, a specification, S, and an

implementation, I, prove them equivalent or reduce the original EC problem to a simpler one

to solve. Given this objective, e-graph rewriting can provide an efficient solution. Figure 7.2

illustrates the overall flow of the assistant. In this work, a particular commercial EC tool is

used throughout, but any RTL2RTL EC tool could be substituted in its place.

7.1.1 E-Graph Initialization

Using the framework developed in the previous chapters, both RTL designs are parsed producing

VeriLang expressions for S and I. In most e-graph applications built using egg, the e-graph is

initialized with a single expression representing the design to be optimized. Here, the e-graph

is initialized with both S and I. The common nodes are automatically shared by egg.

140 Chapter 7. Formal Verification and Bug Fixing via E-Graph Rewriting

Figure 7.3: Initial e-graph representing two designs shown in Figure 7.1, a specification (blue)
and implementation (red). Shared nodes are colored green. Edge labels denote bitwidths. All
e-classes (dashed boxes) initially contain a single node.

Figure 7.3 represents the two designs shown in Figure 7.1 in a single e-graph. Colors indicate

the design in which each node is used. Note that the designs initially only share the input

variables and no intermediate signals. The following sections will discuss how, as the e-graph

is grown, common intermediate signals can be discovered. Initializing the e-graph with both

designs means that both designs can be simultaneously rewritten to find a common equivalent.

7.1.2 Bitwidth Dependent Verification Rewrites

The rewrites described throughout Chapters 3, 5 and 6 targeted optimization. It is natural

that the verification rewrite set should include many of the optimization capabilities, since a

key FV use case is for verifying the correctness of optimizations. However, the rewrite set

should also incorporate additional verification specific rewrites that ‘undo’ optimizations. For

example, it may be productive to include transformations that introduce redundant logic that

enables further sharing. Whilst reversing optimization rewrites seems intuitive, this is non-

trivial for conditional and dynamic rewrites that construct the right-hand side as a function

of the matched pattern. The rewrite rules specifically designed to improve correlation with

downstream logic synthesis tools are omitted.

7.1. ROVERIFY: A Formal Verification Assistant 141

Table 7.1: An example set of bitwidth dependent datapath verification rewrites. All rewrites
are conditionally applied to ensure correctness. Bitwidth and signage information of operators
and operands is omitted here for concision.

Name Left-hand Side Right-hand Side

Unmerge Shift a ≪ (b+ c) (a ≪ b) ≪ c
Mult Left Shift a× (b ≪ c) (a× b) ≪ c
Shift to Mult a ≪ const a× 2const

Mult to Add a× 2 a+ a

Table 7.1 describes the small set of additional verification specific rewrites learnt from experience

using commercial EC tools. Several of these rewrites are the reverse of rewrites targeting

optimization. The space of rewrites that ‘undo’ optimizations is less intuitive, so selecting

valuable rewrites to include is challenging. The rewrites selected are relevant for the test cases

presented here. The assistant is designed such that it is simple for users to extend the rewrite

set with their own transformations that are applicable to their designs.

One important consideration is to ensure that few rewriting opportunities are missed. This

is achieved by parameterizing the pattern matching left-hand side and applying the rewrites

conditionally, following the condition synthesis flow described in Section 3.2.2. Missed rewriting

opportunities can be the difference between a proven equivalence check and an inconclusive

result, contributing to an observable brittleness of existing EC tools. We will see this in

Section 7.2.

A challenge for RTL verification is that functional behavior is bitwidth dependent, for example

the addition of two 8-bit values stored in an 8-bit and a 9-bit result differ in general but may be

equivalent under certain design constraints. This challenge is resolved by reusing the interval

analysis and bitwidth reduction rewrites described in Chapter 5. These rewrites detect and

reduce operators to the minimum bitwidth required to store the result, hence normalizing the

operations. Such techniques are also deployed in commercial tools [86], but, as observed in

Chapter 4, program analysis on e-graphs is able to provide more precise abstractions.

Having defined a set of rewrites, ROVERIFY applies them to the e-graph initialized as described

in Section 7.1.1. Rewrites are applied to both the specification and implementation designs

142 Chapter 7. Formal Verification and Bug Fixing via E-Graph Rewriting

simultaneously with the objective being to discover equivalent sub-expressions across the two

designs.

7.1.3 Maximal Sharing Extraction

Once the e-graph has saturated or reached a user defined iteration limit, the e-graph represents

two (potentially identical) sets of equivalent designs, one set of designs equivalent to the specifi-

cation and one set of designs equivalent to the implementation. From the e-graph, ROVERIFY

extracts two designs, S∗ ∼= S and I∗ ∼= I that share the maximum number of common nodes.

If S and I are found in the same e-class, namely the tool found a path of rewrites between

the two designs, then S∗ and I∗ are syntactically identical. If they are found in different e-

classes, ROVERIFY extracts syntactically distinct S∗ and I∗ sharing as many of the common

sub-expressions as is feasible from the e-graph.

To extract S∗ and I∗, ROVERIFY first identifies which e-classes in the e-graph are associated

with each design. As before, let C denote the set of all e-classes. Given a root e-class, r, a

simple algorithm recursively constructs an associated Cr ⊆ C. Starting from Cr = ∅, it iterates

through each node in r, adding its children e-classes to Cr. The process continues, recursively

visiting each of the child e-classes and iterating through the contained nodes until Cr stops

growing. This construction is guaranteed to terminate for an e-graph comprised of a finite

number of e-classes.

Letting s and i denote the e-classes containing S and I, respectively. The algorithm described

above is used to construct Cs ⊆ C, Ci ⊆ C and the shared e-class set, Cshared = Cs ∩ Ci, which

is used to identify the S∗ and I∗ that share the most common nodes. Define C ′
s = Cs \ Cshared

and C ′
i = Ci \Cshared. In Figures 7.3 and 7.5, C ′

s is highlighted in blue, C ′
i is highlighted in red

and Cshared in green.

The previous chapters sought to minimize hardware specific, PPA cost functions in the extrac-

tion phase. To maximize shared sub-expressions, a simple objective function is used that does

7.1. ROVERIFY: A Formal Verification Assistant 143

S S1
. . .

. . .

Sn S∗ I∗ Im . . .

. . .

I1 I

EC EC ?? EC EC

Assume-Guarantee

Figure 7.4: ROVERIFY extracted waterfall. An EC tool checks the equivalence of each inter-
mediate step. The central equivalence check between S∗ and I∗, which may not be true, may
not be provable using the EC tool, but represents a simplified problem.

not depend on the particular type of an e-graph node n ∈ N :

shared(n) =







K, if C(n) ∈ Cshared,

−1, otherwise,

(7.1)

where C(n) returns the e-class containing the node n and K is the total number of e-classes in

the e-graph. Maximizing this objective function ensures that the maximum possible number

of nodes are shared. The negative scoring of unshared nodes ensures that amongst designs

sharing the same number of nodes, the simplest one is prioritized. Once again, extraction is

formulated as an ILP problem to correctly account for sub-expression reuse, modifying the

objective function as shown in (7.2). The ILP introduced in Section 3.3.2 is extended, but the

formulation is repeated below to avoid confusion. As before, define N to be the set of nodes

and E ⊆ N × C the set of edges. Let Nc to denote the set of nodes in a given e-class c and

introduce Pc to denote the set of parent nodes of c. In this case define the root set S = {s, i}.

With these definitions the problem formulation is the following:

maximize
∑

n∈N

shared(n) · xn subject to: (7.2)

∀(n, c) ∈ E.
∑

n′∈Nc

xn′ ≥ xn (7.3)

∀c ∈ S.
∑

n∈Nc

xn = 1. (7.4)

∀c ∈ C.
∑

n∈Nc

xn ≤ 1 (7.5)

∀c ∈ C s.t. Pc ̸= ∅.
∑

n∈Nc

xn ≤
∑

n′∈Pc

xn′ . (7.6)

144 Chapter 7. Formal Verification and Bug Fixing via E-Graph Rewriting

Constraints (7.3) and (7.4) are as in Section 3.3.2 and guarantees that only valid designs are

extracted. Additionally, since the objective function is now maximized, (7.5) is necessary to

ensure at most one node in each e-class is implemented, whilst (7.6) avoids unused signals in

the generated RTL. As before topological sorting variables avoid cycles in the e-graph.

As described in Section 2.4.2, egg includes a default greedy extraction method, which can be

used to minimize a comparable objective function. Such an approach is faster but fails to

correctly account for common sub-expressions so may generate designs that are not as ‘close’

as the ILP approach. The ILP approach is recommended for solving EC problems that will

require manual intervention. This choice is left as a user-defined option.

Using the proof production feature in egg, described in Section 2.4.2, two sequences of VeriLang

expressions, separated by a single rewrite, are produced such that

S ∼= S1
∼= . . . ∼= Sn

∼= S∗ and I ∼= I1 ∼= . . . ∼= Im ∼= I∗.

To verify the correctness of each step and remove the need to trust ROVERIFY, the assistant

converts each VeriLang expression to System Verilog. ROVERIFY then deploys the EC tool

to formally verify the equivalence at each step as shown in Figure 7.4. If the EC tool can

prove each step including S∗ ∼= I∗, then there is a chain of reasoning proving the equivalence

of S and I. To ensure soundness of the chain of reasoning, a final “Assume-Guarantee” lemma

proving S ∼= I is included, which uses all of the intermediate proofs (assuming they passed).

This provides confidence that no gaps were left in the reasoning.

It is expected that all proofs of the form Sj
∼= Sj+1 and Ij ∼= Ij+1 will be trivial for the EC

tool, since each step represents a single rewrite application. The S∗ ∼= I∗ proof may be more

complex. If the EC tool is unable to prove S∗ ∼= I∗ then human intervention is required.

However, provided ROVERIFY made some progress, the EC problem is simplified, as these

designs share more common signals than the original S and I.

Proof decomposition also aids performance. Since each intermediate proof is independent they

can be proven in parallel. The solver configuration is customized for each intermediate proof,

7.2. ROVERIFY Case-Study 145

(a) E-graph after two iterations of rewriting. Designs sharing an intermediate signal are highlighted
with black arrows.

(b) E-graph after three iterations of rewriting (77 nodes), where S and I have been merged into the
same e-class.

Figure 7.5: Stages of e-graph growth starting from the initial e-graph in Figure 7.3.

since it is simple to map each rewrite to an optimal solver setup. For example, the commercial

tool provides a set of solve scripts that handle proof orchestration with different capabilities.

These scripts can be enabled by the user. ROVERIFY contains a mapping from rewrites to

the most efficient solve script. With limited effort ROVERIFY can target additional solvers.

7.2 ROVERIFY Case-Study

A case-study of a real world problem gives an example of where this technique proves beneficial.

The following results use an up-to-date version of the commercial EC tool running on SLES 12

on Intel Xeon W-2155 CPUs.

146 Chapter 7. Formal Verification and Bug Fixing via E-Graph Rewriting

The designs shown in Figure 7.1 are alternative ways to implement floating-point multipli-

cation of denormal numbers. More precisely, given two denormals 21−bias × 0.manta and

21−bias × 0.mantb, the product of their mantissas is often reduced to a standard non-denormal

multiplication by normalizing the values, expressing it as either (manta ≪ m)×(mantb ≪ n) or

equivalently as (manta×mantb) ≪ (m+n), where m = LZC(manta)+1, n = LZC(mantb)+1

and LZC(·), as in Chapter 5, is the leading zero counter function.

In three iterations of rewriting ROVERIFY applies a sequence of rewrites such that the specifi-

cation and implementation are found within the same e-class. The progress of the e-graph can

be seen in Figures 7.5. After two iterations of rewriting the first shared signal is detected, see

the green left-shift in Figure 7.5a, where the initial specification and designs sharing the green

node are highlighted with brighter arrows. The e-graph shown in Figure 7.5b, after three iter-

ations of rewriting, contains only green nodes, since ROVERIFY was able to apply a sequence

of rewrites such that the original root nodes of S and I were merged into the same equivalence

class. As a result, all e-classes are shared, meaning Cshared = C.

From the final e-graph, Figure 7.5b, ROVERIFY then extracts identical S∗ and I∗ along with

the sequence of rewrites that were applied to reach it. The rewrites transforming S to I are

summarized below, omitting trivial bitwidth alteration and commutativity steps.

(A× B) ≪ (M +N) → (7.7)

Unmerge Left-Shift ((A× B) ≪ N) ≪ M → (7.8)

Left-Shift Mult (A× (B ≪ N)) ≪ M → (7.9)

Left-Shift Mult (A ≪ M)× (B ≪ N) (7.10)

ROVERIFY runs in 0.14 seconds, growing an e-graph comprised of 77 nodes. Unfortunately,

the commercial EC tool is unable to prove the “Left-Shift Mult” and “Mult Left-Shift” trans-

formations when non-uniform bitwidths are used. ROVERIFY automatically resolves this by

further decomposing this proof, automatically inserting an additional intermediate step with

standardized bitwidths. The additional step helps the EC tool to converge in less than 0.1

7.3. ROVERIFIX: Automatic Bug Fixing 147

second, therefore, it may be the case that there is a rewrite rule that only gets applied under

certain parameterizations in the internal EC proof engine.

Including commutativity and bitwidth alteration rewrites, ROVERIFY generated a total of 20

intermediate equivalence checks (including the “Assume-Guarantee” lemma). All intermediate

proofs and the completeness lemma are proven in 0.1 seconds by the EC tool. When passed

the original EC problem, S ∼= I, the tool did not converge within 24 hours.

7.3 ROVERIFIX: Automatic Bug Fixing

In contrast to ROVERIFY, which assists existing tools with proof convergence, ROVERIFIX

can automatically provide bug fixes for broken implementations. More precisely, given a specifi-

cation, S and an implementation, I, that are proven to not be equivalent, S ̸∼= I, ROVERIFIX

finds the fixed design I ′ nearest to I, such that I ′ ∼= S. The aim is to minimize the distance

between I and I ′ because an implementation typically contains optimizations that it is desirable

for the fixed design, I ′, to retain. This is similar to the intent behind corrections applied for

an Engineering Change Order (ECO).

Figure 7.6 describes the ROVERIFIX flow, that includes two phases of e-graph rewriting. First,

an e-graph is initialized with the specification S, and the same ROVERIFY rewrites are applied

to this e-graph. The objective here is to explore a large space of design candidates that are

equivalent to S. To then localize the fix, VeriLang is extended with a new operator, FIX, that

takes two arguments, a correct expression and an expression that is to be replaced with the

correct expression.

In the second phase, FIX(S, I) is added to the e-graph, and only the rewrites given in Table 7.2

are applied. These rewrites propagate the FIX operators down through the e-graph, maximally

sharing sub-expressions between expressions equivalent to S and I. Intuitively, pushing FIX

nodes through the e-graph localizes the source of the bug. Once the e-graph has saturated,

the extraction process minimizes the area cost function introduced in Chapter 3, giving each

FIX node a cost of one, since this corresponds to the minimum area bug fix. Since the FIX

148 Chapter 7. Formal Verification and Bug Fixing via E-Graph Rewriting

Spec
Front-End

VeriLang

egg

E-Graph

Impl
Front-End

VeriLang
egg

E-Graph

Rewrites

Rewrite

Analysis

Extract

VeriLang

Back-End
Fixed
RTL

Figure 7.6: Flow diagram for ROVERIFIX, taking a specification, S, and implementation
circuit design, I, in System Verilog. Two separate phases of e-graph rewriting are applied, and
the minimal fix design, I ′, is extracted.

Table 7.2: FIX propagation and removal rewrites, that remove FIX nodes when no correction
is necessary. op denotes any VeriLang operator.

Name Left-hand Side Right-hand Side

Propagate Fix FIX(a op b, c op d) FIX(a, c) op FIX(b, d)
Fix Same FIX(a, a) a

operations do not directly map to any Verilog operator, ROVERIFIX generates Verilog for

only the first operand of each FIX node, since this corresponds to a design that is functionally

equivalent to the specification. ROVERIFIX also reports the applied corrections to the user

via VeriLang expressions.

The extracted VeriLang expression may contain multiple FIX operators, corresponding to sev-

eral independent corrections. There is no limit on the size of a correction, and if no sharing

was possible then the minimal ROVERIFIX correction will be to replace the implementation

by the original specification. The difference in the area cost, between the implementation I

and fixed design I ′, gives an estimate of the size of the correction.

Figure 7.7 provides a motivational example, where the designer has made a common mistake,

by using an incorrect bitwidth. In particular, add 8bit is defined to be an 8-bit signal, such that

7.4. ROVERIFY Results 149

module spec (A,B,C, out) ;
input l o g i c [7 : 0] A, B, C;
output l o g i c [9 : 0] out ;
wire [8 : 0] add r i gh t ;

// carry−out r e t a ined
assign add r i gh t = B + C;
assign out = A + add r i ght ;

endmodule

(a) Specification design.

module impl (A,B,C, out) ;
input l o g i c [7 : 0] A, B, C;
output l o g i c [9 : 0] out ;
wire [7 : 0] add 8b i t ;

// carry−out d i s carded
assign add 8b i t = A + B;
assign out = add 8b i t + C;

endmodule

(b) Buggy implementation design.

Figure 7.7: Motivational example for ROVERIFIX, where the specification and implementation
designs are not functionally equivalent.

the carry-out of the addition is discarded. In the first rewriting phase, ROVERIFIX applies

associativity of addition to the specification, then, in the second rewriting phase, FIX operators

are pushed through the design. The minimal extracted correction in this case, is given by

FIX(9, 8), which corresponds to incrementing the bitwidth of the add 8bit signal.

A thorough evaluation of ROVERIFIX is still to be completed, but to demonstrate real-world

value, ROVERIFIX was applied to an Intel developed floating-point norm component calculat-

ing 1/
√
1 + x2. Simulation discovered that the component incorrectly processed input NaNs.

A correct specification and the buggy implementation were passed to ROVERIFIX, which

correctly identified a FIX minimizing the circuit area overhead in just 0.19 seconds.

7.4 ROVERIFY Results

The results section will only focus on the evaluation of ROVERIFY. Having demonstrated how

ROVERIFY can provide the intermediate steps transforming a previously inconclusive proof

into one solved in under one second, ROVERIFY’s impact on verification runtimes is now

evaluated across a datapath optimization benchmark set.

150 Chapter 7. Formal Verification and Bug Fixing via E-Graph Rewriting

Table 7.3: A comparison of commercial EC tool performance with and without ROVERIFY
generated intermediate proofs. We report the baseline EC tool performance, solving the original
EC problem. We compare this to the sum of the runtime of ROVERIFY and the runtime of
the assisted EC proofs. Runtimes are in seconds. The Box Filter benchmark used the greedy
extraction method, which reduces the extraction runtime mitigating the significant e-graph
growth.

Benchmark Baseline EC ROVERIFY EC with assistance Total Speedup

ADPCM Decoder 0.68 0.38 0.49 0.87 0.78
H-264 VBSME-4 7.93 7.04 0.71 7.75 1.02
H-264 VBSME-8 93.13 14.3 0.20 14.50 6.42
FIR Filter 5.50 3.49 0.79 4.28 1.29
Box Filter 79.56 16.10 1.61 17.71 4.49
Case Study - 0.14 0.10 0.24 -

7.4.1 Benchmark Selection

Benchmarks are taken from [24] and original and optimized RTL is implemented for those

designs that are fully described in this paper. The depth-8 FIR Filter and ADPCM Decoder

are also used in Chapter 3, but this chapter uses hand-written rather than ROVER-generated

optimized RTL, to ensure a fair evaluation. The chapter introduces two instances of a kernel

from the H.264 VBSME (variable block size motion estimator), which correspond to absolute

difference summation trees of size four and eight,
∑

i |ai − bi|. This design was not used

throughout the previous chapters as the logic synthesis results were difficult to explain using the

limited reports available. The case study, as described above, was also optimized in Chapter 3.

The Box Filter is an Intel provided benchmark, not optimized in previous chapters due to the

scalability concerns highlighted by the MCM examples in Chapter 3. The same scalability

concerns will also be apparent in this chapter. The Box Filter is a reconfigurable square filter,

sampling four pixels at a time. The dataflow graph for this design is shown in Figure 7.8.

The optimized design deploys constant factorization and mux rewriting which is relatively

challenging for the EC tool to prove.

The benchmarks include a range of arithmetic and logical operators, representative of typical

RTL optimizations that may be performed by-hand or by a specialized datapath optimization

tool. For each benchmark, ROVERIFY is run until either it discovers a complete path between

specification and implementation or it deploys five iterations of rewriting, whichever comes first.

7.4. ROVERIFY Results 151

Since the e-graph applies all rewrites in parallel at each iteration, many parts of the designs

can be simultaneously transformed in each iteration.

In these results, the EC tool does not report any increase in the initial compilation time, which

is less than a second for all cases presented here. The runtime is reported from when the solvers

start running. For the baseline, all the EC tool’s solvers are deployed in parallel taking the

minimum proof time. For the ROVERIFY results, the maximum time taken to solve a single

sub-problem is reported, since each proof can be run in parallel. In practice, the industrial

tool’s multi-processor environment introduced runtime overhead that was not related to the

proof. Namely, running a proof on a server grid produced unpredictable runtime results due to

the license checks and interactions with the workload management software.

Table 7.3 presents the performance impact of the assistant on the total verification time, whilst

Table 7.4 provides statistics that describe ROVERIFY’s resource utilization. In the first ex-

ample, ADPCM Decoder, the EC tool efficiently proves the correctness of the two designs,

meaning that the overhead of ROVERIFY is detrimental, increasing total runtime. It is worth

noting that the intermediate proofs do help to reduce the solve time. The two H-264 designs

suggest that ROVERIFY’s advantage may grow with the design complexity.

In the remaining benchmarks, ROVERIFY has a net positive impact on total runtime. The

introduction of intermediate proofs reduces the EC solve time by up to 465x, when just com-

paring the EC tool runtimes and discounting ROVERIFY’s runtime. Including the runtime to

generate the intermediate proofs, the total verification time is reduced by up to 6x. In most

cases, the EC tool solves each of the intermediate proofs in less than 0.5 seconds as each step

represents a single local modification to the design. ROVERIFY effectively selects the most

optimal solver orchestration script per intermediate proof, which helps performance. This is

possible because ROVERIFY understands what transformation has been applied at each stage.

Such an approach avoids wasted compute resources, since there is no need to run different

solvers in parallel for each of the intermediate problems.

The Box Filter is the only example where the assistant is unable to find a complete path. This

verification problem may require additional rewriting iterations or entirely new rewrites to

152 Chapter 7. Formal Verification and Bug Fixing via E-Graph Rewriting

Table 7.4: Summary of ROVERIFY resources and results across the benchmarks. We report
the number of rewriting iterations, the final e-graph size in terms of node count, the number
of intermediate proofs generated, and whether the e-graph found a complete path of rewrites
between S and I.

Benchmark Iterations E-graph Nodes Num. Proofs Full Path

ADPCM 3 469 20 Y
VBSME-4 5 5640 26 Y
VBSME-8 5 5800 46 Y
FIR Filter 5 4700 23 Y
Box Filter 5 21400 115 N
Case Study 3 149 20 Y

Figure 7.8: Dataflow graph of the initial Box Filter design. The SEL nodes represent muxes.

7.5. Summary 153

bridge the gap between the specification and implementation designs. To minimize ROVER-

IFY’s runtime, the faster greedy extraction method is deployed. To solve the EC problem,

S∗ ∼= I∗, one of the slower but more powerful solver orchestration scripts is used. In this case,

the S∗ ∼= I∗ EC problem takes significantly longer to prove than the other sub-problems. In

general, as ROVERIFY’s e-graph grows through more iterations of rewriting, it is reasonable

to expect to find S∗ and I∗ that are increasingly close. Table 7.3 reports Box Filter results

based on five iterations of rewriting. If ROVERIFY is instead limited to three iterations of

rewriting, the assistant’s runtime is reduced from 16 seconds to 2 seconds. The intermediate

proofs generated by this smaller e-graph can be proven in 1.12 seconds, reducing the total ver-

ification time to approximately 3 seconds, corresponding to a 24x speedup over the baseline.

These results highlight a tradeoff between proof decomposition and the proof itself.

In addition to the commercial EC solver used above, the open-source SymbiYosys equivalence

checker [87] was also tested. However, for the instances tried, SymbiYosys was not able to solve

any equivalence problems since the tool is SAT/SMT based and does not handle datapath

problems efficiently. A key advantage of a rewrite based approach is that performance is not

affected by bitwidths, whilst SAT-based solvers will suffer from exponential slowdowns as the

bitwidths are increased. This approach is promising because the full power of a SAT or SMT

solver is not typically needed on the entire design, meaning that a specialized tool that does

not target notions of completeness can prove valuable.

7.5 Summary

This chapter takes advantage of the RTL rewriting framework developed for ROVER, applying

it to datapath equivalence checking. Having observed limitations in commercial EC tools, an

automated formal verification assistant, ROVERIFY, was developed, that enhances the capa-

bilities of industrial tools. By incorporating both the specification and implementation into

a single e-graph, ROVERIFY simultaneously rewrites both designs to efficiently identify com-

mon equivalent sub-expressions. From the e-graph, the tool extracts a sequence of intermediate

154 Chapter 7. Formal Verification and Bug Fixing via E-Graph Rewriting

designs, decomposing the complete proof into a sequence of smaller sub-proofs which can be

checked by trusted tools. In cases where the assistant is unable to identify a complete path

between the specification and the implementation designs, the e-graph rewriting may still re-

duce the equivalence checking to a simpler sub-problem. This enables FV engineers to focus on

the challenging core of the verification task and helps the EC tool to identify additional inter-

nal equivalence pairs automatically, reducing the complexity of the overall equivalence check.

To aide in the debug process, ROVERIFIX, a tool to automatically correct bugs in broken

implementations, was also developed. These diverse applications demonstrate the value of the

underlying RTL rewriting framework, providing a platform upon which further extensions could

be developed.

Whilst ROVERIFY has demonstrated potential, to fully realize the technology’s capabilities,

it must be integrated into a complete EC tool, providing access to a wider range of solvers and

providing the front-end interfaces to consume designs in alternative languages, e.g. C++. The

final chapter will discuss the future plans for the advances in the technology and how to widen

adoption of the techniques presented.

Chapter 8

Conclusion

The work described in this thesis is inspired by the engineers working in industry, writing HDL

code every day, and, as such, has addressed practical challenges that affect a large part of

the semiconductor sector. Most of the research stems from an observation that manual RTL

optimization and verification can be phrased as a rewriting problem, but a rewriting problem

with a non-monotonic profitability model. Exploration at the word-level RTL abstraction has

yielded significant PPA improvements, revisiting a subject that has not received much attention

for over a decade [24, 12]. Despite being closed-source, the ROVER work now provides a

baseline used (and re-implemented) by independent academics to evaluate the performance of

their proposed word-level RTL optimization methodology [16]. The ROVER tool has been

used to optimize a number of production hardware modules, but has also been an invaluable

education tool to teach engineers how to improve their designs. Whilst the techniques have

demonstrated promising results, the tools have yet to gain meaningful adoption within Intel.

To significantly broaden adoption, it will be necessary to develop a clean user experience and

robust front-end, increasing the scope of designs the tools are able to consume. Section 8.3 will

describe the future roadmap of the tools developed throughout this thesis.

The tools developed throughout this thesis (ROVER/ROVERIFY/ROVERIFIX) have demon-

strated the great potential in rewriting and, in particular, the application of equality saturation

to hardware design challenges. These tools have contributed to a growing list of equality sat-

155

156 Chapter 8. Conclusion

uration based circuit design methodologies [115, 72, 145, 146], and position papers arguing for

the broader adoption of equality saturation in EDA [117, 118]. Whilst equality saturation may

be broadly applicable, it is important to recognize that it may not always be the best solution.

For example, prior work has highlighted scalability concerns in application to gate-level circuit

design [147], which others resolved by incorporating machine learning techniques [115]. Chap-

ter 6 also highlighted a class of optimizations that are fundamentally incompatible with a local

rewriting approach.

Beyond hardware design, Chapters 4 and 5 describe broadly applicable contributions to the

e-graphs and equality saturation community. Indeed, the connection between abstract in-

terpretation and e-graph rewriting inspired the egg developers to teach interval analysis as

part of their PLDI 2022 tutorial.1 The work described in Chapter 5 provides an approach

to encoding context within the e-graph, which has become a subject of interest for several

researchers [104, 105]. A comparison of these alternative methods would be a valuable contri-

bution to better understand the strengths and weaknesses of each approach.

The remainder of the thesis will survey several areas of e-graph research with unresolved chal-

lenges, promising directions in circuit design, and discuss the future development of the tools

described throughout.

8.1 E-Graph and Equality Saturation Outlook

The e-graph community of users and researchers has grown significantly over the duration of my

PhD, with substantial advances in the field. This growth has brought into sharp focus two key

scalability questions. In particular, scalability of both the e-graph search and extraction from

the e-graph. The efficiency of e-graph search has been improved by unifying equality saturation

and datalog [148], modifying the foundational algorithms and data representations. Others have

modified the orchestration of e-graph search, investigating custom rewrite schedules [146] and

iterative e-graph search [149]. These approaches no longer construct and explore a single e-graph

1https://github.com/egraphs-good/egg-tutorial-pldi-2022

8.1. E-Graph and Equality Saturation Outlook 157

as originally shown in Figure 2.5, but decompose this process into several phases of e-graph

exploration. However, this re-introduces a phase-ordering problem, removing one of the main

advantages of equality saturation. This observation highlights a tradeoff between exploring

a large space of equivalent expressions, much of which provides no benefit, and finding the

minimum cost expression. Constructing a generally applicable and scalable orchestration of

e-graph search would be an invaluable contribution.

To address the second challenge, efficient common sub-expression aware extraction, there has

been a more organized community effort, with the compilation of the extraction gym,2 a set

of community contributed e-graph benchmarks. In fact, several ROVER benchmarks have

also been contributed. Beyond benchmarks, researchers are encouraged to contribute novel

extraction methods to this repository [150, 151], which can be evaluated using a standardized

set of benchmarks. As in the case of encoding context within the e-graph, each approach has

strengths and weaknesses, so selecting the right extraction method is a choice made by users of

equality saturation. Once again, there is still much to explore in this domain, and, in particular,

the community lacks effective metrics that an equality saturation user can measure to better

understand their e-graphs.

Beyond expanding the scale of problems that equality saturation can be applied to, there is

also interest in expanding the scope. By definition, equality saturation explores equivalent

programs, but it is natural to consider different relationships between programs. For example,

in hardware, it is common to tradeoff accuracy for performance. An equality saturation based

approach is unable to explore such a design space, since it is restricted to an equivalence

relation. Such programs are related by a different relation, a partial order, which raises the

following question. Is it possible to construct an alternative data structure capable of exploring

a different underlying relation between programs?

2https://github.com/egraphs-good/extraction-gym

158 Chapter 8. Conclusion

8.2 Directions in Digital Circuit Design

The research directions described in Section 8.1 represent theoretical contributions, that will

facilitate and enhance a range of applications. From an applications perspective, this thesis

has taken steps towards bridging the gap between high-level circuit optimization techniques

and low-level logic synthesis for datapath circuits. One contribution that would inspire further

research in this area and facilitate effective comparison is an industrially relevant benchmark

suite. Such benchmark suites have provided the foundations for consistent improvements in

both SMT solvers [152] and logic synthesis tools [153]. At the conclusion of this PhD, a large

collection of datapath benchmarks has been accumulated which will be extended and combined

with other collections [16], to provide the datapath synthesis community with a standardized

benchmark set. Building upon these datapath benchmarks, there are several future circuit

design challenges, which I plan to tackle.

8.2.1 Pipelining and Retiming

This thesis has primarily focused on combinational RTL, yet most production RTL is pipelined,

inserting registers that separate a computation across several clock cycles. Often, architectural

design and scheduling are separate tasks. For example, in HLS tools datapath optimizations are

performed before passing the optimized designs onto a scheduling engine. Phrasing datapath

design and scheduling as a co-optimization problem has the potential to greatly improve the

quality of pipelined circuits. Optimal register placement in an implementation designed without

considering a pipeline structure will yield a sub-optimal circuit.

Building on Chapter 6, it is trivial to phrase register retiming as an e-graph rewriting problem,

where alternative register placements can be evaluated once their consequences are known. In

combination with datapath transformations, such an approach can co-optimize the datapath

and schedule. Tying this co-optimization to a circuit power model will further enhance the

interaction between register placement and power optimization. Deploying the rewrite schedul-

ing approach described in Section 8.1, register movement can be limited, as recommended by

8.3. Software Roadmap 159

the ABC developers [154].

8.2.2 Approximate Computing

All of the work described in this thesis has maintained bit-accurate equivalence of the circuit

outputs, but as suggested in Section 8.1, hardware designers are often not subject to such strict

accuracy constraints. Error tolerance is particularly prominent in graphics hardware, since the

directX specifications [155] and standard compliance tests permit some freedom in the result.

A more substantial contribution will extend the e-graph framework to explore approximately

equivalent circuits. Namely, to incorporate transformations that do not preserve equivalence,

but produce results within some error threshold. Such transformations are relevant in many

aspects of hardware design [156, 64], for example a faithfully rounded circuit may produce one of

two valid outputs for a given input [157]. The key challenges in using an e-graph representation

were identified above, but an ability to explore and quantify the accuracy performance tradeoffs

would be invaluable in hardware design.

8.3 Software Roadmap

Chapter 1 described a collection of software libraries and applications that have been developed

throughout the PhD. A simplified hierarchy is repeated in Figure 8.1. An ambitious goal, is

for all Intel Graphics RTL to be run through ROVER, allowing us to quantify the technique’s

impact on a diverse code base. To achieve this, ROVER must first become more robust with a

greatly improved front-end and stable analyses. Once ROVER can consume more code, it will

be possible to perform a broad evaluation as ROVER will also be able to capture wider context,

such as late arriving module inputs. Groups that have re-implemented e-graph based RTL

optimization in combination with open-source logic synthesis have shown that the technique

yields promising results across an extensive benchmark suite [16].

A secondary objective is to build a developer base within Intel. In particular, rtl2egg is

160 Chapter 8. Conclusion

ROVER
Datapath Optimizer

ROVERIFY
Verification Assistant

ROVERIFIX
RTL Debugger

rtl2egg
RTL Rewriting Library

Figure 8.1: A diagrammatic representation of the library and tool suite developed.

designed to be an extensible RTL rewriting library, providing an egg like interface on which

further applications can be built. An extensible library is only adopted when paired with mature

documentation and tutorials. Both these items are in development currently. A broader user

base will certainly raise new challenges and highlight areas to improve within the library.

Finally, it is clear that ROVERIFY and ROVERIFIX would benefit substantially from integra-

tion into a broader verification suite [87]. In particular, this would allow us to deploy e-graph

rewriting directly on the verification tool’s internal representation, avoiding the need to com-

municate between tools via Verilog. This would also greatly enhance the power of ROVERIFY

and ROVERIFIX as existing suites orchestrate a collection of solvers that could be combined

with e-graph rewriting.

8.4 Final Remarks

To conclude the thesis, I wish to highlight a broader challenge that will gate the wider adop-

tion of high-level digital circuit design flows. Working top-down, the programming languages

community continues to develop new languages and HLS frameworks [158, 159], yet the vast

majority still generate Verilog to be consumed by a logic synthesis tool. Working bottom-up,

there has been extensive work on low-level logic minimization, implemented in tools such as

ABC [160] and libraries such as those developed at EPFL [161]. Between these two abstrac-

tions, tools such as Yosys [9] have made progress on higher-level optimizations, yet still the gap

is substantial. Commercial HLS vendors have identified this issue and include call-outs to their

8.4. Final Remarks 161

proprietary logic synthesis tools [6]. Meanwhile, in one leading HLS research group, they have

started to observe significant advantages by guiding elements of low-level design optimizations

via high-level re-structuring [162].

This discussion leads to two observations. First, Verilog was not designed to be an intermediate

representation for a high-level design flow. Second, given their configuration complexity, logic

synthesis tools are not well-suited for use in a tool-chain. These observations point towards one

ambitious solution. An integrated high-level design flow, that bridges the gap and constructs

a clean path from high-level languages down to a netlist representation. There has been some

early explorations in this direction [163, 164], but building a mature flow will require a more

sustained effort. The key benefit would come from an ability to maintain high-level design

information throughout the abstraction lowering, improving the correlation between high- and

low-level design decisions whilst also simplifying the verification challenge.

References

[1] European Commission, “European Chips Act,” 9 2023. [Online].

Available: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/

europe-fit-digital-age/european-chips-act en

[2] D. Thomas and P. Moorby, The Verilog hardware description language. Springer Science

& Business Media, 2008.

[3] D. R. Coelho, The VHDL Handbook, 1st ed. Kluwer Academic Publishers, 1989.

[4] M. C. Mcfarland, A. C. Parker, and R. Camposano, “The High-Level Synthesis of Digital

Systems,” Proceedings of the IEEE, vol. 78, no. 2, pp. 301–318, 1990.

[5] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. D. Brown,

and J. H. Anderson, “LegUp: An open-source high-level synthesis tool for FPGA-based

processor/accelerator systems,” Transactions on Embedded Computing Systems, vol. 13,

no. 2, 2013.

[6] Cadence, “Stratus HLS,” 2023. [Online]. Available: https://www.cadence.com/en US/

home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html

[7] Xilinx, “Vitis HLS,” 2023. [Online]. Available: https://www.xilinx.com/products/

design-tools/vitis/vitis-hls.html

[8] Synopsys, “Design Compiler User Guide S-2021.06-SP2,” Synopsys, Mountain View,

Tech. Rep., 6 2021.

162

REFERENCES 163

[9] C. Wolf and J. Glaser, “Yosys-A Free Verilog Synthesis Suite,” in Proceedings of Aus-

trochip, 2013. [Online]. Available: https://yosyshq.net/yosys/files/yosys-austrochip2013.

pdf

[10] Cadence Design Systems, “Jasper Formal Verification Platform,” 2024. [Online]. Avail-

able: https://www.cadence.com/en US/home/tools/system-design-and-verification/

formal-and-static-verification.html

[11] D. W. Knapp, Behavioral synthesis: digital system design using the synopsys behavioral

compiler. USA: Prentice-Hall, Inc., 1996.

[12] A. K. Verma, P. Brisk, and P. Ienne, “Challenges in automatic optimization of arithmetic

circuits,” in 19th IEEE Symposium on Computer Arithmetic, 2009, pp. 213–218.

[13] ——, “Variable latency speculative addition: a new paradigm for arithmetic circuit de-

sign,” in Proceedings of the Conference on Design, Automation and Test in Europe. Mu-

nich: Association for Computing Machinery, 2008, pp. 1250–1255.

[14] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality saturation: A new approach to

optimization,” in Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, vol. 44, no. 1. Association for Computing

Machinery, 2009, pp. 264–276.

[15] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha, “Egg: Fast and

extensible equality saturation,” in Proceedings of the ACM on Principles of Programming

Languages, vol. 5, no. POPL. Association for Computing Machinery, 2021.

[16] X. Yao, Y. Wang, X. Li, Y. Lian, R. Chen, L. Chen, M. Yuan, H. Xu, and B. Yu,

“RTLRewriter: Methodologies for Large Models aided RTL Code Optimization,” 2024.

[Online]. Available: https://arxiv.org/abs/2409.11414

[17] K. W. Ho, S. T. Chung, T. F. Chen, Y. W. Fan, C. Cheng, C. H. Liu, and J. H. R.

Jiang, “WolFEx: Word-Level Function Extraction and Simplification from Gate-Level

Arithmetic Circuits,” in IEEE/ACM International Conference on Computer Aided Design

(ICCAD). IEEE/ACM, 2023, pp. 1–9.

164 REFERENCES

[18] G. D. Micheli, Synthesis and optimization of digital circuits. McGraw-Hill Higher Edu-

cation, 1994.

[19] Cadence, “Genus Synthesis Solution,” 2024. [Online]. Available: https://www.cadence.

com/en US/home/resources/datasheets/genus-synthesis-solution-ds.html

[20] T. Ajayi, D. Blaauw, T.-B. Chan, C.-K. Cheng, V. A. Chhabria, K. Choo, M. Coltella,

S. Dobre, R. Dreslinski, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng, M. Kim, J. Li,

Z. Liang, U. Mallappa, P. Penzes, G. Pradipta, S. Reda, A. Rovinski, K. Samadi, S. S.

Sapatnekar, L. Saul, C. Sechen, V. Srinivas, W. Swartz, D. Sylvester, D. Urquhart,

L. Wang, M. Woo, and B. Xu, “OpenROAD: Toward a Self-Driving, Open-Source Digital

Layout Implementation Tool Chain,” Government Microcircuit Applications and Critical

Technology Conference, 2019.

[21] R. Zimmermann, “Datapath synthesis for standard-cell design,” in 19th IEEE Symposium

on Computer Arithmetic, 2009, pp. 207–211.

[22] I. Koren, Computer Arithmetic Algorithms, 2nd ed. AK Peters/CRC Press, 2001.

[23] Synopsys, “Coding Guidelines for Datapath Synthesis,” Synopsys, Mountain View, Tech.

Rep., 12 2019.

[24] A. K. Verma, P. Brisk, and P. Ienne, “Data-flow transformations to maximize the use of

carry-save representation in arithmetic circuits,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 27, no. 10, pp. 1761–1774, 2008.

[25] C. Seger, “Voss II,” Chalmers, 2023. [Online]. Available: https://github.com/TeamVoss/

VossII

[26] J. Pope and C.-J. H. Seger, “Bifröst: Creating Hardware With Building Blocks,” in

Forum on Specification & Design Languages (FDL), 2023, pp. 1–8.

[27] O. Gustafsson, “A difference based adder graph heuristic for multiple constant multipli-

cation problems,” in IEEE International Symposium on Circuits and Systems, 2007, pp.

1097–1100.

REFERENCES 165

[28] R. I. Hartley, “Subexpression Sharing in Filters Using Canonic Signed Digit Multipliers,”

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,

vol. 43, no. 10, pp. 677–688, 1996.

[29] M. D. Ercegovac and T. Lang, Digital arithmetic, 1st ed. Morgan Kaufmann, 2003.

[30] F. De Dinechin, S. I. Filip, M. Kumm, and A. Volkova, “Towards Arithmetic-Centered

Filter Design,” in 2021 IEEE 28th Symposium on Computer Arithmetic (ARITH), vol.

2021-June, 2021, pp. 115–118.

[31] M. Kumm, “Optimal constant multiplication using integer linear programming,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 5, pp. 567–571, 2018.

[32] R. Garcia and A. Volkova, “Toward the Multiple Constant Multiplication at Minimal

Hardware Cost,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70,

no. 5, pp. 1976–1988, 2023.

[33] N. Fiege, M. Kumm, and P. Zipf, “Bit-Level Optimized Constant Multiplication Using

Boolean Satisfiability,” IEEE Transactions on Circuits and Systems I: Regular Papers,

vol. 71, no. 1, pp. 249–261, 2024.

[34] J. E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Transactions

on Electronic Computers, vol. EC-8, no. 3, pp. 330–334, 1959.

[35] B. Orloski, S. Coward, and T. Drane, “Automatic Generation of Complete Polynomial

Interpolation Design Space for Hardware Architectures,” in Proceedings of the 28th Asia

and South Pacific Design Automation Conference. Tokyo: Association for Computing

Machinery, 2023, pp. 573–578.

[36] J. Detrey and F. De Dinechin, “Table-based polynomials for fast hardware function eval-

uation,” in International Conference on Application-Specific Systems, Architectures and

Processors. IEEE, 2005, pp. 328–333.

[37] R. Zimmermann and D. Q. Tran, “Optimized synthesis of sum-of-products,” in 37th

Asilomar Conference on Signals, Systems & Computers, vol. 1, 2003, pp. 867–872.

166 REFERENCES

[38] F. de Dinechin and M. Kumm, Application-Specific Arithmetic. Cham: Springer Inter-

national Publishing, 2024.

[39] R. Roy, J. Raiman, N. Kant, I. Elkin, R. Kirby, M. Siu, S. Oberman, S. Godil, and

B. Catanzaro, “PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforce-

ment Learning,” in 58th ACM/IEEE Design Automation Conference (DAC), vol. 2021-

December. San Francisco, CA: IEEE, 2021, pp. 853–858.

[40] Z. Pei, H.-L. Zhen, M. Yuan, Y. Huang, and B. Yu, “BetterV: Controlled Verilog Gener-

ation with Discriminative Guidance,” in Proceedings of the 41st International Conference

on Machine Learning. Vienna: JMLR.org, 2 2024.

[41] A. Beaumont-Smith and C.-C. Lim, “Parallel prefix adder design,” in Proceedings 15th

IEEE Symposium on Computer Arithmetic, 2001, pp. 218–225.

[42] L. Dadda, “Some schemes for parallel multipliers,” Alta frequenza, vol. 34, pp. 349–356,

1965.

[43] C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Transactions on Electronic

Computers, vol. EC-13, no. 1, pp. 14–17, 1964.

[44] J. Miao and S. Li, “A design for high speed leading-zero counter,” in Proceedings of the

International Symposium on Consumer Electronics, ISCE, 2017, pp. 22–23.

[45] Synopsys, “DesignWare Library,” 2024. [Online]. Available: https://www.synopsys.

com/designware-ip/soc-infrastructure-ip/designware-library.html

[46] A. Beaumont-Smith, N. Burgess, S. Lefrere, and C. C. Lim, “Reduced latency IEEE

floating-point standard adder architectures,” Proceedings 14th IEEE Symposium on Com-

puter Arithmetic, pp. 35–42, 1999.

[47] J. Sohn and E. E. Swartzlander, “Improved architectures for a fused floating-point add-

subtract unit,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59,

no. 10, pp. 2285–2291, 2012.

REFERENCES 167

[48] P. M. Seidel and G. Even, “Delay-Optimized Implementation of IEEE Floating-Point

Addition,” IEEE Transactions on Computers, vol. 53, no. 2, pp. 97–113, 2004.

[49] D. R. Lutz, A. Saini, M. Kroes, T. Elmer, and H. Valsaraju, “Fused FP8 4-Way Dot Prod-

uct With Scaling and FP32 Accumulation,” in 2024 IEEE 31st Symposium on Computer

Arithmetic (ARITH), 2024, pp. 40–47.

[50] H. H. Saleh and E. E. Swartzlander, “A floating-point fused Dot-product unit,” in 26th

IEEE International Conference on Computer Design, ICCD, 2008, pp. 427–431.

[51] A. Roldao Lopes and G. A. Constantinides, “A fused hybrid floating-point and fixed-

point dot-product for FPGAs,” in Reconfigurable Computing: Architectures, Tools and

Applications, vol. 5992 LNCS. Springer Berlin Heidelberg, 2010, pp. 157–168.

[52] J. Sohn and E. E. Swartzlander, “A Fused Floating-Point Four-Term Dot Product Unit,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 3, 2016.

[53] T. Yao, D. Gao, X. Fan, and X. Ren, “Three-operand floating-point adder,” in IEEE 12th

International Conference on Computer and Information Technology, 2012, pp. 192–196.

[54] M. Münch, B. Wurth, R. Mehra, J. Sproch, and N. Wehn, “Automating RT-level operand

isolation to minimize power consumption in datapaths,” in Proceedings Design, Automa-

tion and Test in Europe Conference and Exhibition, 2000, pp. 624–631.

[55] V. Tiwari, S. Malik, and P. Ashar, “Guarded evaluation: pushing power management

to logic synthesis/design,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 17, no. 10, pp. 1051–1060, 1998.

[56] A. P. Hurst, “Automatic synthesis of clock gating logic with controlled netlist perturba-

tion,” in Proceedings of the 45th Annual Design Automation Conference. Anaheim, CA:

Association for Computing Machinery, 2008, pp. 654–657.

[57] M. Donno, A. Ivaldi, L. Benini, and E. Macii, “Clock-tree power optimization based on

RTL clock-gating,” in Proceedings of the 40th Annual Design Automation Conference.

Anaheim, CA: Association for Computing Machinery, 2003, pp. 622–627.

168 REFERENCES

[58] Synopsys, “Power Compiler,” 2023. [Online]. Available: https://www.synopsys.com/

implementation-and-signoff/rtl-synthesis-test/power-compiler.html

[59] Cadence, “Joules RTL Power Solution,” 2023. [Online]. Avail-

able: https://www.cadence.com/en US/home/tools/digital-design-and-signoff/

power-analysis/joules-rtl-power-solution.html

[60] Siemens Digital Industries Software, “Automatic sequential clock gating with

PowerPro,” 2021. [Online]. Available: https://resources.sw.siemens.com/en-US/

white-paper-overview-of-automatic-sequential-clock-gating/

[61] T. T. Hoang and P. Larsson-Edefors, “Data-width-driven power gating of integer arith-

metic circuits,” in Proceedings of the 2012 IEEE Computer Society Annual Symposium

on VLSI. IEEE, 2012, pp. 237–242.

[62] V. Krishnan and S. Katkoori, “A genetic algorithm for the design space exploration of

datapaths during high-level synthesis,” IEEE Transactions on Evolutionary Computation,

vol. 10, no. 3, pp. 213–229, 2006.

[63] H. Y. Liu and L. P. Carloni, “On Learning-based methods for design-space exploration

with high-level synthesis,” in Proceedings of the 50th Annual Design Automation Confer-

ence. Austin: Association for Computing Machinery, 2013.

[64] L. Ferretti, J. Kwon, G. Ansaloni, G. D. Guglielmo, L. P. Carloni, and L. Pozzi, “Lever-

aging Prior Knowledge for Effective Design-Space Exploration in High-Level Synthesis,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39,

no. 11, pp. 3736–3747, 2020.

[65] A. Canis, S. D. Brown, and J. H. Anderson, “Modulo SDC scheduling with recurrence

minimization in high-level synthesis,” in 24th International Conference on Field Pro-

grammable Logic and Applications (FPL), 2014, pp. 1–8.

[66] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline synthesis,” in

IEEE/ACM International Conference on Computer-Aided Design, ICCAD, 2013, pp.

211–218.

REFERENCES 169

[67] Y. Hara-Azumi, T. Matsuba, H. Tomiyama, S. Honda, and H. Takada, “Selective resource

sharing with RT-level retiming for clock enhancement in high-level synthesis,” in Proceed-

ings of the 2012 IEEE 14th International Conference on High Performance Computing

and Communication & 2012 IEEE 9th International Conference on Embedded Software

and Systems. IEEE, 2012, pp. 1534–1540.

[68] P. N. Krishnapriya and B. Bala Tripura Sundari, “High level synthesis for retiming

stochastic VLSI signal processing architectures,” in 8th International Conference on Ad-

vances in Computing & Communications (ICACC-2018), vol. 143, 2018, pp. 10–19.

[69] F. Ferrandi, V. G. Castellana, S. Curzel, P. Fezzardi, M. Fiorito, M. Lattuada, M. Min-

utoli, C. Pilato, and A. Tumeo, “Invited: Bambu: an Open-Source Research Framework

for the High-Level Synthesis of Complex Applications,” in 58th ACM/IEEE Design Au-

tomation Conference (DAC), vol. 2021-December. San Francisco, CA: IEEE, 2021, pp.

1327–1330.

[70] A. Sohrabizadeh, Y. Bai, Y. Sun, and J. Cong, “Automated Accelerator Optimization

Aided by Graph Neural Networks,” in Proceedings of the 59th ACM/IEEE Design Au-

tomation Conference. San Francisco, California: Association for Computing Machinery,

2022, pp. 55–60.

[71] Y. Liao, T. Adegbija, and R. Lysecky, “Efficient System-Level Design Space Exploration

for High-level Synthesis using Pareto-Optimal Subspace Pruning,” in Proceedings of the

28th Asia and South Pacific Design Automation Conference. Tokyo: Association for

Computing Machinery, 2023, pp. 567–572.

[72] E. Ustun, I. San, J. Yin, C. Yu, and Z. Zhang, “IMpress: Large Integer Multiplication Ex-

pression Rewriting for FPGA HLS,” in 2022 IEEE 30th Annual International Symposium

on Field-Programmable Custom Computing Machines (FCCM), 2022, pp. 1–10.

[73] J. Cheng, S. Coward, L. Chelini, R. Barbalho, and T. Drane, “SEER: Super-Optimization

Explorer for HLS using E-graph Rewriting with MLIR,” in Proceedings of the 29th ACM

International Conference on Architectural Support for Programming Languages and Op-

170 REFERENCES

erating Systems. La Jolla, CA: Association for Computing Machinery, 8 2024, pp.

1029–1044.

[74] W. A. Hunt, M. Kaufmann, J. S. Moore, and A. Slobodova, “Industrial hardware and

software verification with ACL2,” Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, vol. 375, no. 2104, 2017.

[75] J. S. Moore, T. W. Lynch, and M. Kaufmann, “A mechanically checked proof of the

AMD5K86™ floating-Point division program,” IEEE Transactions on Computers, vol. 47,

no. 9, pp. 913–926, 1998.

[76] D. M. Russinoff, “ A Mechanically Checked Proof of IEEE Compliance of the Floating

Point Multiplication, Division and Square Root Algorithms of the AMD-K7 ™ Processor

,” LMS Journal of Computation and Mathematics, vol. 1, pp. 148–200, 1998.

[77] J. Harrison, “A machine-checked theory of floating point arithmetic,” in Proceedings of

the 12th International Conference on Theorem Proving in Higher Order Logics, vol. 1690.

Springer-Verlag, 1999, pp. 113–130.

[78] ——, Handbook of practical logic and automated reasoning, 1st ed. Cambridge University

Press, 2009, no. 06.

[79] C. J. H. Seger and R. E. Bryant, “Formal verification by symbolic evaluation of partially-

ordered trajectories,” Formal Methods in System Design, vol. 6, no. 2, pp. 147–189, 1995.

[80] IEEE, “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp. 1–70,

2008.

[81] M. Temel and W. A. Hunt, “Sound and Automated Verification of Real-World RTL Mul-

tipliers,” in Proceedings of the 21st Formal Methods in Computer-Aided Design, FMCAD,

2021, pp. 53–62.

[82] M. Temel, A. Slobodova, and W. A. Hunt, “Automated and Scalable Verification of

Integer Multipliers,” in Computer Aided Verification, vol. 12224 LNCS. Springer, 2020,

pp. 485–507.

REFERENCES 171

[83] M. Kaufmann and J. S. Moore, “ACL2: An industrial strength version of Nqthm,” in

Proceedings of 11th Annual Conference on Computer Assurance, 1996, pp. 23–34.

[84] T. Drane and H. Jain, “Formal Verification and Validation of High-Level Optimizations

of Arithmetic Datapath Blocks,” in Synopsys User Group (SNUG) Conference, 2011.

[85] B. Xue, P. Chatterjee, and S. K. Shukla, “Simplification of C-RTL equivalent checking

for fused multiply add unit using intermediate models,” in 18th Asia and South Pacific

Design Automation Conference (ASP-DAC), 2013, pp. 723–728.

[86] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley, “Solver technology for system-level to RTL

equivalence checking,” in Proceedings of the Conference on Design, Automation and Test

in Europe. Nice: European Design and Automation Association, 2009, pp. 196–201.

[87] YosysHQ GmbH, “SymbiYosys.” [Online]. Available: https://symbiyosys.readthedocs.

io/en/latest/index.html

[88] P. Chauhan, D. Goyal, G. Hasteer, A. Mathur, and N. Sharma, “Non-cycle-accurate

sequential equivalence checking,” in 46th ACM/IEEE Design Automation Conference,

2009, pp. 460–465.

[89] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed,

M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng,

C. Tinelli, and Y. Zohar, “cvc5: A Versatile and Industrial-Strength SMT Solver,” Tools

and Algorithms for the Construction and Analysis of Systems, pp. 415–442, 2022.

[90] L. De Moura and N. Bjørner, “Z3: An efficient SMT Solver,” in Proceedings of the Theory

and Practice of Software, 14th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, vol. 4963 LNCS. Budapest: Springer-Verlag,

2008, pp. 337–340.

[91] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program analysis

& transformation,” in International Symposium on Code Generation and Optimization,

CGO. IEEE, 2004, pp. 75–86.

172 REFERENCES

[92] K. D. Cooper and L. Torczon, Engineering a compiler, 2nd ed. Elsevier, 2011.

[93] P. Cousot, Principles of Abstract Interpretation, 1st ed. MIT Press, 9 2021.

[94] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints,” in Proceedings of

the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

vol. Part F130756. Los Angeles, California: Association for Computing Machinery, 1977,

pp. 238–252.

[95] M. Daumas and G. Melquiond, “Certification of bounds on expressions involving rounded

operators,” ACM Transactions on Mathematical Software, vol. 37, no. 1, 2010.

[96] D. Lesbre and M. Lemerre, “Compiling with Abstract Interpretation,” Proceedings of the

ACM on Programming Languages, vol. 8, no. PLDI, p. 26, 6 2024.

[97] P. Talbot, D. Cachera, E. Monfroy, and C. Truchet, “Combining constraint languages via

abstract interpretation,” in IEEE 31st International Conference on Tools with Artificial

Intelligence (ICTAI), vol. 2019-November. IEEE, 2019, pp. 50–58.

[98] P. Ferrara, L. Negrini, V. Arceri, and A. Cortesi, “Static analysis for dummies: Experi-

encing LiSA,” in Proceedings of the 10th ACM SIGPLAN International Workshop on the

State Of the Art in Program Analysis. Association for Computing Machinery, 2021, pp.

1–6.

[99] G. Parthasarathy, M. K. Iyer, K. T. Cheng, and F. Brewer, “RTL SAT simplification

by Boolean and interval arithmetic reasoning,” in IEEE/ACM International Conference

on Computer-Aided Design, Digest of Technical Papers, ICCAD, vol. 2005, 2005, pp.

297–302.

[100] J. Xu, E. Murphy, J. Cortadella, and L. Josipovic, “Eliminating Excessive Dynamism of

Dataflow Circuits Using Model Checking,” in Proceedings of the 2023 ACM/SIGDA In-

ternational Symposium on Field Programmable Gate Arrays. Monterey, CA: Association

for Computing Machinery, 2023, pp. 27–37.

REFERENCES 173

[101] C. G. Nelson, “Techniques for program verification,” Ph.D. dissertation, Stanford Uni-

versity, 1980.

[102] R. Joshi, G. Nelson, and K. Randall, “Denali: A goal-directed superoptimizer,” in Pro-

ceedings of the ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI). Association for Computing Machinery, 2002, pp. 304–314.

[103] L. De Moura and N. Bjørner, “Efficient E-matching for SMT solvers,” in Proceedings of

the 21st International Conference on Automated Deduction: Automated Deduction, vol.

4603 LNAI. Bremen: Springer-Verlag, 2007, pp. 183–198.

[104] E. Singher and S. Itzhaky, “Easter Egg: Equality Reasoning Based on E-Graphs with

Multiple Assumptions,” in Formal Methods in Computer-Aided Design, 2024, p. 70.

[105] T. Hou, S. Laddad, and J. M. Hellerstein, “Towards Relational Contextual Equality

Saturation,” 2024. [Online]. Available: https://tylerhou.com/contextual-eqsat.pdf

[106] B. Y. E. Chang and K. R. M. Leino, “Abstract interpretation with alien expressions and

heap structures,” in Verification, Model Checking, and Abstract Interpretation, vol. 3385.

Springer, 2005, pp. 147–163.

[107] O. Flatt, S. Coward, M. Willsey, Z. Tatlock, and P. Panchekha, “Small Proofs from Con-

gruence Closure,” in Proceedings of the 22nd Conference on Formal Methods in Computer-

Aided Design, FMCAD 2022. TU Wien Academic Press, 2022, p. 9.

[108] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock, “Automatically improv-

ing accuracy for floating point expressions,” in Proceedings of the 36th ACM SIGPLAN

Conference on Programming Language Design and Implementation, vol. 50, no. 6. As-

sociation for Computing Machinery, 2015, pp. 1–11.

[109] G. H. Smith, A. Liu, S. Lyubomirsky, S. Davidson, J. McMahan, M. Taylor, L. Ceze, and

Z. Tatlock, “Pure tensor program rewriting via access patterns (representation pearl),” in

Proceedings of the 5th ACM SIGPLAN International Symposium on Machine Program-

ming. Association for Computing Machinery, 2021, pp. 21–31.

174 REFERENCES

[110] A. Vanhattum, R. Nigam, V. T. Lee, J. Bornholt, and A. Sampson, “Vectorization for

digital signal processors via equality saturation,” in International Conference on Archi-

tectural Support for Programming Languages and Operating Systems - ASPLOS. Asso-

ciation for Computing Machinery, 2021, pp. 874–886.

[111] Y. R. Wang, S. Hutchison, J. Leang, B. Howe, and D. Suciu, “SPORES: Sum-product

optimization via relational equality saturation for large scale linear algebra,” Proceedings

of the VLDB Endowment, vol. 13, no. 11, pp. 1919–1932, 2020.

[112] H. Xu and F. Kjolstad, “Copy-and-patch compilation: A fast compilation algorithm for

high-level languages and bytecode,” Proceedings of the ACM on Programming Languages,

vol. 5, no. OOPSLA, 2021.

[113] C. Nandi, M. Willsey, A. Zhu, Y. R. Wang, B. Saiki, A. Anderson, A. Schulz, D. Gross-

man, and Z. Tatlock, “Rewrite rule inference using equality saturation,” in Proceedings of

the ACM on Programming Languages, vol. 5, no. OOPSLA. Association for Computing

Machinery, 2021.

[114] A. Pal, B. Saiki, R. Tjoa, C. Richey, A. Zhu, O. Flatt, M. Willsey, Z. Tatlock, and

C. Nandi, “Equality Saturation Theory Exploration à la Carte,” Proceedings of the ACM

on Programming Languages, vol. 7, no. OOPSLA, pp. 1034–1062, 2023.

[115] C. Chen, G. Hu, D. Zuo, C. Yu, Y. Ma, and H. Zhang, “E-Syn: E-Graph Rewriting

with Technology-Aware Cost Functions for Logic Synthesis,” in 61st ACM/IEEE Design

Automation Conference. San Francisco, CA: Association for Computing Machinery, 3

2024, pp. 1–6.

[116] A. T. Sheikh, A. Shoker, S. A. Fahmy, and P. Esteves-Verissimo, “ResiLogic: Leveraging

Composability and Diversity to Design Fault and Intrusion Resilient Chips,” 9 2024.

[Online]. Available: https://arxiv.org/abs/2409.02553

[117] E. Ustun, C. Yu, and Z. Zhang, “Equality Saturation for Datapath Synthesis: A Pathway

to Pareto Optimality,” in 60th ACM/IEEE Design Automation Conference (DAC), 2023.

REFERENCES 175

[118] G. H. Smith, Z. D. Sisco, T. Techaumnuaiwit, J. Xia, V. Canumalla, A. Cheung,

Z. Tatlock, C. Nandi, and J. Balkind, “There and Back Again: A Netlist’s Tale with

Much Egraphin’,” 3 2024. [Online]. Available: https://arxiv.org/abs/2404.00786

[119] S. Coward, G. A. Constantinides, and T. Drane, “Automatic Datapath Optimization

using E-Graphs,” in IEEE 29th Symposium on Computer Arithmetic (ARITH). IEEE,

9 2022, pp. 43–50.

[120] S. Coward, T. Drane, and G. A. Constantinides, “ROVER: RTL Optimization via Ver-

ified E-Graph Rewriting,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 43, pp. 4687–4700, 2024.

[121] G. Steele, Common LISP: the language, 2nd ed. Elsevier, 1990.

[122] A. Niemetz, M. Preiner, A. Reynolds, Y. Zohar, C. Barrett, and C. Tinelli, “Towards

bit-width-independent proofs in SMT solvers,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics), vol. 11716 LNAI, 2019.

[123] M. Popoloski, “Slang,” 2023. [Online]. Available: https://github.com/MikePopoloski/

slang

[124] A. Solar-Lezama, “Program Synthesis by Sketching,” Ph.D. dissertation, University of

California at Berkeley, 2009.

[125] C. M. Bishop, Pattern recognition and machine learning, 1st ed. Berlin: Springer-Verlag,

2006, no. 4.

[126] R. Lougee-Heimer, “The Common Optimization INterface for Operations Research: Pro-

moting open-source software in the operations research community,” IBM Journal of

Research and Development, vol. 47, no. 1, pp. 57–66, 2003.

[127] M. Kumm, “Multiple Constant Multiplication Optimizations for Field Programmable

Gate Arrays,” Ph.D. dissertation, Universität Kassel, Kassel, Germany, Wiesbaden, 2016.

176 REFERENCES

[128] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang, “A survey of

compiler testing,” 2 2020.

[129] Y. Zhou, J. Bosamiya, Y. Takashima, J. Li, M. Heule, and B. Parno, “Mariposa: Mea-

suring SMT Instability in Automated Program Verification,” in Proceedings of the 23rd

Conference on Formal Methods in Computer-Aided Design – FMCAD. TU Wien Aca-

demic Press, 2023, pp. 178–188.

[130] N. Damouche, M. Martel, P. Panchekha, C. Qiu, A. Sanchez-Stern, and Z. Tatlock,

“Toward a standard benchmark format and suite for floating-point analysis,” in Numerical

Software Verification, vol. 10152 LNCS. Springer, 2017, pp. 63–77.

[131] S. Coward, G. A. Constantinides, and T. Drane, “Combining E-Graphs with Abstract

Interpretation,” in Proceedings of the 12th ACM SIGPLAN International Workshop on

the State Of the Art in Program Analysis. Orlando, FL: Association for Computing

Machinery, 2023, pp. 1–7.

[132] P. Cousot, R. Cousot, and L. Mauborgne, “The Reduced Product of Abstract Domains

and the Combination of Decision Procedures,” in Foundations of Software Science and

Computational Structures, vol. 6604 LNCS. Springer, 2011, pp. 456–472.

[133] G. Birkhoff, “Von Neumann and Lattice Theory,” Bulletin of the American Mathematical

Society, vol. 64, no. 3, 1958.

[134] P. Cousot and R. Cousot, “Comparing the galois connection and widening/narrowing

approaches to abstract interpretation,” in Programming Language Implementation and

Logic Programming, vol. 631 LNCS. Springer, 1992, pp. 269–295.

[135] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis. Society

for Industrial and Applied Mathematics, 2009.

[136] U. Kulisch, Computer Arithmetic in Theory and Practice. Academic press, 1981.

[137] A. Solovyev, M. S. Baranowski, I. Briggs, C. Jacobsen, Z. Rakamarić, and G. Gopalakr-

ishnan, “Rigorous estimation of floating-point round-off errors with symbolic Taylor ex-

REFERENCES 177

pansions,” ACM Transactions on Programming Languages and Systems, vol. 41, no. 1,

2018.

[138] S. Coward, G. Constantinides, and T. Drane, “Automating Constraint-Aware Datap-

ath Optimization using E-Graphs,” in 60th ACM/IEEE Design Automation Conference

(DAC), San Francisco, CA, 2023, pp. 1–6.

[139] S. Coward, T. Drane, and G. A. Constantinides, “Constraint-Aware E-Graph Rewriting

for Hardware Performance Optimization,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, pp. 1–14, 2024.

[140] S. Coward, T. Drane, E. Morini, and G. A. Constantinides, “Combining Power and

Arithmetic Optimization via Datapath Rewriting,” in 2024 IEEE 31st Symposium on

Computer Arithmetic (ARITH). IEEE, 6 2024, pp. 24–31.

[141] S. Reda and A. N. Nowroz, “Power modeling and characterization of computing devices:

A survey,” Foundations and Trends in Electronic Design Automation, vol. 6, no. 2, pp.

121–216, 5 2012.

[142] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo Theories Library

(SMT-LIB),” www.SMT-LIB.org, 2016. [Online]. Available: https://smt-lib.org/

[143] M. Stepp, R. Tate, and S. Lerner, “Equality-based translation validator for LLVM,” in

Proceedings of the 23rd International Conference on Computer Aided Verification, vol.

6806 LNCS. Snowbird, UT: Springer-Verlag, 2011, pp. 737–742.

[144] S. Coward, E. Morini, B. Tan, T. Drane, and G. Constantinides, “Datapath Verifica-

tion via Word-Level E-Graph Rewriting,” in 23rd Conference on Formal Methods in

Computer-Aided Design – FMCAD. TU Wien Academic Press, 10 2023, pp. 92–100.

[145] J. Woodruff, T. Koehler, A. Brauckmann, C. Cummins, S. Ainsworth, and M. F. P.

O’Boyle, “Rewriting History: Repurposing Domain-Specific CGRAs,” 9 2023. [Online].

Available: https://arxiv.org/abs/2309.09112

178 REFERENCES

[146] S. Thomas and J. Bornholt, “Automatic Generation of Vectorizing Compilers for

Customizable Digital Signal Processors,” in Proceedings of the 29th ACM International

Conference on Architectural Support for Programming Languages and Operating Systems,

Volume 1, ser. ASPLOS ’24. New York, NY, USA: Association for Computing Machinery,

2024, pp. 19–34. [Online]. Available: https://doi.org/10.1145/3617232.3624873

[147] A. Wanna, S. Coward, T. Drane, G. A. Constantinides, and M. D. Ercegovac, “Multiplier

Optimization via E-Graph Rewriting,” in 57th Asilomar Conference on Signals, Systems,

and Computers, 12 2023, pp. 1528–1533.

[148] Y. Zhang, Y. R. Wang, O. Flatt, D. Cao, P. Zucker, E. Rosenthal, Z. Tatlock, and

M. Willsey, “Better Together: Unifying Datalog and Equality Saturation,” Proceedings

of the ACM on Programming Languages, vol. 7, no. PLDI, pp. 468–492, 2023.

[149] T. Kœhler, A. Goens, S. Bhat, T. Grosser, P. Trinder, and M. Steuwer, “Guided Equality

Saturation,” Proceedings of the ACM on Programming Languages, vol. 8, no. POPL, pp.

1727–1758, 1 2024.

[150] G. Sun, Y. Zhang, and H. Ni, “E-Graphs as Circuits, and Optimal Extraction via

Treewidth,” 2024. [Online]. Available: https://arxiv.org/abs/2408.17042

[151] A. K. Goharshady, C. K. Lam, and L. Parreaux, “Fast and Optimal Extraction for Sparse

Equality Graphs,” in Proceedings of the ACM on Programming Languages. Association

for Computing Machinery, 10 2024, pp. 2551–2577.

[152] C. Barrett, M. Deters, L. de Moura, A. Oliveras, and A. Stump, “6 Years of SMT-COMP,”

Journal of Automated Reasoning, vol. 50, no. 3, pp. 243–277, 2013.

[153] A. Mishenko, “IWLS Logic Synthesis Competition,” 2024. [Online]. Available:

https://github.com/alanminko/iwls2024-ls-contest

[154] A. Mishenko, R. Brayton, and M. Fujita, “Mapping and Retiming Revisited,”

in International Workshop on Logic Synthesis, 2023. [Online]. Available: https:

//people.eecs.berkeley.edu/∼alanmi/publications/2023/iwls23 m&r.pdf

REFERENCES 179

[155] Microsoft, “DirectX-Specs,” Microsoft, Tech. Rep., 2022. [Online]. Available:

https://microsoft.github.io/DirectX-Specs/

[156] M. Rezaalipour, M. Biasion, I. Scarabottolo, G. A. Constantinides, and L. Pozzi, “A

Parametrizable Template for Approximate Logic Synthesis,” in 53rd Annual IEEE/IFIP

International Conference on Dependable Systems and Networks Workshops (DSN-W).

IEEE, 2023, pp. 175–178.

[157] T. Drane, S. Coward, M. Temel, and J. Leslie-Hurd, “On the Systematic Creation of

Faithfully Rounded Commutative Truncated Booth Multipliers,” in 2024 IEEE 31st Sym-

posium on Computer Arithmetic (ARITH). IEEE, 6 2024, pp. 108–115.

[158] H. Chen, N. Zhang, S. Xiang, Z. Zeng, M. Dai, and Z. Zhang, “Allo: A Programming

Model for Composable Accelerator Design,” Proceedings of the ACM on Programming

Languages, vol. 8, no. PLDI, pp. 593–620, 6 2024.

[159] B. Pelton, A. Sapek, K. Eguro, D. Lo, A. Forin, M. Humphrey, J. Xi, D. Cox,

R. Karandikar, J. de Fine Licht, E. Babin, A. Caulfield, and D. Burger, “Wavefront

Threading Enables Effective High-Level Synthesis,” Proceedings of the ACM on Pro-

gramming Languages, vol. 8, no. PLDI, pp. 1066–1090, 6 2024.

[160] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verification tool,”

in Computer Aided Verification, vol. 6174 LNCS. Springer Berlin Heidelberg, 2010, pp.

24–40.

[161] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli, F. Mozafari, S.-Y.

Lee, A. T. Calvino, D. S. Marakkalage, and G. D. Micheli, “The EPFL Logic Synthesis

Libraries,” 2018. [Online]. Available: https://arxiv.org/abs/1805.05121

[162] L. Guo, Y. Chi, J. Lau, L. Song, X. Tian, M. Khatti, W. Qiao, J. Wang, E. Ustun,

Z. Fang, Z. Zhang, and J. Cong, “TAPA: A Scalable Task-parallel Dataflow Programming

Framework for Modern FPGAs with Co-optimization of HLS and Physical Design,” ACM

Transactions on Reconfigurable Technology and Systems, vol. 16, no. 4, pp. 1–31, 12 2023.

180 REFERENCES

[163] F. Schuiki, A. Kurth, T. Grosser, and L. Benini, “LLHD: a multi-level intermediate

representation for hardware description languages,” in Proceedings of the 41st ACM SIG-

PLAN Conference on Programming Language Design and Implementation. New York,

NY, USA: ACM, 6 2020, pp. 258–271.

[164] A. Guerrieri, S. Guha, L. Josipovic, and P. Ienne, “DynaRapid: From C to FPGA in

a Few Seconds,” in Proceedings of the 2024 ACM/SIGDA International Symposium on

Field Programmable Gate Arrays. New York, NY, USA: ACM, 4 2024, p. 40.

Appendices

181

Appendix A

Benchmarks

Source Benchmark Ch. 3 Ch. 5 Ch. 6 Ch. 7
Area Delay Power Verif

Intel

Media Kernel ✓ *✓
Weight Calculation ✓ ✓

Unorm8 to FP32 5 ✓

FP16 to Unorm11 5 ✓

Normalization 5 ✓

Comb. Mux Add Tree 6 ✓

Address Generation 6 ✓

Open

FIR Filter Kernel [24] ✓ ✓

ADPCM Decoder [24] ✓ ✓

Shift FMA (pg. 57) ✓

Shift Mult (pg. 137) ✓ ✓

MCM (pg. 58) ✓

FP16 Sub (pg. 108) 5 ✓ *✓
FP8 Sub (pg. 108) 5 ✓

Max Tree (pg. 111) 5 ✓

Pipe Mux Add Tree [54] 6 ✓

Dual-Op ALU [55] 6 ✓

Sequential Reg [60] 6 ✓

H-264 VBSME [24] ✓

Box Filter (pg. 152) ✓

Table A.1: All Intel closed-source and open-source RTL benchmarks used in the thesis. Each
benchmark consists of a single RTL module. A tick indicates that the benchmark was used in
that chapter. A number indicates that the evaluation of the approach for that benchmark was
presented in a different chapter. For example, the results of applying techniques from Chapter 3
to FP16 Sub are presented in Chapter 5. Entries marked with a star indicate the benchmark
was modified for use in that chapter. Chapter 4 did not use any RTL benchmarks.

182

Appendix B

Associativity of Addition Condition

The fully general associativity of addition rewrite contains no type restrictions, namely all

possible combinations of signage and bitwidth type parameters can be matched. For this rewrite

definition, a condition is synthesized that is a function of the bitwidth and signage parameters

using the approach described in Section 3.2.2. It can be specified as a triple, (ϕ, lhs, rhs), such

that (3.9) holds, where,

lhs = (+ we wd sd (+ wd sd wa sa a wb sb b) wc sc c)

rhs = (+ we wa sa a wd sd (+ wd sd wb sb b wc sc c))

183

184 Chapter B. Associativity of Addition Condition

ϕ = (!(we < wd + 1) ∧ ((!(wd < wa + wb)∧

((!(wd < wb + wc) ∧ ((!(sc ∧ sd) ∧ ((!(sa ∧ sb)∧

((!(sa ∧ sd) ∧ ((!(sb ∧ sc))))))))∨

(sc ∧ sd ∧ (((sa ∧ sb))))))))))∨

(we < wd + 1 ∧ ((!(we < wb + 1) ∧ ((!(sb)∧

((!(sc ∧ sd) ∧ ((!(sa ∧ sd))∨

(sa ∧ sd ∧ ((!(wa < we))))))∨

(sc ∧ sd ∧ ((!(wc < we − 1)∧

((!(we < wa + 1) ∧ ((!(sa ∧ sc))))∨

((we < wa + 1))))))))∨

(sb ∧ ((!(sa ∧ sc)∧

((!(sa ∧ sb) ∧ ((!(sb ∧ sc))))))∨

(sa ∧ sc ∧ ((!(sb ∧ sd)∧

((we < wc + 1 ∧ ((!(wa < we))))))∨

((sb ∧ sd))))))))∨

(we < wb + 1 ∧ ((!(wa < we) ∧ ((!(wc < we))∨

(wc < we ∧ ((!(sc))∨

(sc ∧ ((!(sb ∧ sd)∧

((!(sb ∧ sc) ∧ ((!(sc ∧ sd))))))∨

((sb ∧ sd))))))))∨

(wa < we ∧ ((!(sa) ∧ ((!(wc < we − 1))∨

(wc < we − 1 ∧ ((!(sc))∨

(sc ∧ ((!(sb ∧ sd) ∧ ((!(sd)∧

((!(sb ∧ sc))))))∨

((sb ∧ sd))))))))∨

(sa ∧ ((!(sb ∧ sd) ∧ ((!(sa ∧ sb)∧

((!(sd)))))) ∨ ((sb ∧ sd)))))))))).

Appendix C

SMT Encoding of Motivational

Example

The code below describes a complete encoding of the motivational equivalence checking problem

we summarised in Figure 7.1c.

(set−l o g i c QF BV)

; Inputs

(dec la r e−fun A () (BitVec 16))

(dec la r e−fun B () (BitVec 16))

(dec la r e−fun M () (BitVec 4))

(dec la r e−fun N () (BitVec 4))

; Outputs

(dec la r e−fun spec () (BitVec 63))

(dec la r e−fun impl () (BitVec 63))

; S i gna l s

(dec la r e−fun C () (BitVec 32))

(dec la r e−fun D () (BitVec 31))

(dec la r e−fun E () (BitVec 31))

(dec la r e−fun P () (BitVec 5))

185

186 Chapter C. SMT Encoding of Motivational Example

; Zeros

(dec la r e−fun z e r o s 1 () (BitVec 1))

(dec la r e−fun z e r o s 12 () (BitVec 12))

(dec la r e−fun z e r o s 15 () (BitVec 15))

(dec la r e−fun z e r o s 16 () (BitVec 16))

(dec la r e−fun z e r o s 27 () (BitVec 27))

(dec la r e−fun z e r o s 31 () (BitVec 31))

(dec la r e−fun z e r o s 32 () (BitVec 32))

(dec la r e−fun z e r o s 58 () (BitVec 58))

(a s s e r t (= z e r o s 1 #b0))

(a s s e r t (= ze r o s 12 #b000000000000))

(a s s e r t (= ze r o s 15 #b000000000000000))

(a s s e r t (= ze r o s 16 #b0000000000000000))

(a s s e r t (= ze r o s 27 #b000000000000000000000000000))

(a s s e r t (= ze r o s 31 #b0000000000000000000000000000000))

(a s s e r t (= ze r o s 32 #b00000000000000000000000000000000))

(a s s e r t (= ze r o s 58 (concat z e r o s 27 z e r o s 31)))

(a s s e r t (= D (bvshl (concat z e r o s 15 A) (concat z e r o s 27 M))))

(a s s e r t (= E (bvshl (concat z e r o s 15 B) (concat z e r o s 27 N))))

(a s s e r t (= spec (bvmul (concat z e r o s 32 D) (concat z e r o s 32 E))))

(a s s e r t (= C (bvmul (concat z e r o s 16 A) (concat z e r o s 16 B))))

(a s s e r t (= P (bvadd (concat z e r o s 1 M) (concat z e r o s 1 N))))

(a s s e r t (= impl (bvshl (concat z e r o s 31 C) (concat z e r o s 58 P))))

(a s s e r t (not (= spec impl)))

(check−sa t)

	Statement of Originality
	Abstract
	Acknowledgements
	Acronyms
	List of Tables
	List of Figures
	Introduction
	Problem Statements
	Contributions
	Implementation and Evaluation
	Thesis Outline
	Publications

	Background
	Datapath Circuit Design
	RTL Synthesis
	Manual Datapath Design
	Low-Power RTL Design
	High-Level Synthesis

	Datapath Formal Verification
	Program Analysis
	E-Graphs and Equality Saturation
	Equality Saturation and Rewriting
	Egg
	Applications

	Circuit Area Minimization via Verified E-Graph Rewriting at the RT-Level
	Intermediate Representation
	Rewrites
	Specifying Rewrites
	Synthesizing Rewrite Conditions

	Extraction and Back-End
	Cost Model
	Common Sub-Expression Aware Extraction
	Code Generation

	Verification
	Results
	Benchmark Selection
	Exploiting Datapath Optimizations
	Bitwidth Dependent Architectures
	Performance

	Cost Metric Evaluation
	Summary

	Combining Equality Saturation with Abstract Interpretation
	Theory
	Abstraction
	Application to E-graphs
	Cyclic E-graphs and Fixpoints

	Implementation
	Results
	Benchmark Selection
	Evaluation
	Iterative Method Discovery

	Summary

	Automating Constraint-Aware Datapath Optimization using E-Graphs
	Localizing Constraint-Aware Optimization
	Sub-Domain Equivalence
	Sub-Domain Equivalence in an E-Graph
	Program Analysis Refinement

	RTL Performance Optimization
	Value Range Analysis
	Constraint and Value Range Aware RTL Rewriting
	Extraction

	Results
	Case-Study: Floating-Point Subtract
	Multi-Objective Optimization
	Benchmark Selection
	Delay Optimization Evaluation

	Summary

	Combining Power and Arithmetic Optimization via E-Graph Rewriting
	Encoding Power Optimizations
	Data Gating
	Clock Gating

	Power Estimation and Extraction
	Simulation
	Operator Power Model

	Results
	Benchmark Selection
	Dynamic Power Reduction
	Data Dependent Design

	Summary

	Formal Verification and Bug Fixing via E-Graph Rewriting
	ROVERIFY: A Formal Verification Assistant
	E-Graph Initialization
	Bitwidth Dependent Verification Rewrites
	Maximal Sharing Extraction

	ROVERIFY Case-Study
	ROVERIFIX: Automatic Bug Fixing
	ROVERIFY Results
	Benchmark Selection

	Summary

	Conclusion
	E-Graph and Equality Saturation Outlook
	Directions in Digital Circuit Design
	Pipelining and Retiming
	Approximate Computing

	Software Roadmap
	Final Remarks

	References
	Appendices
	Benchmarks
	Associativity of Addition Condition
	SMT Encoding of Motivational Example

